Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T02:27:05.505Z Has data issue: false hasContentIssue false

X-ray Diffraction Band Profiles of Montmorillonite—Influence of Hydration and of the Exchangeable Cations

Published online by Cambridge University Press:  01 July 2024

J. Mering
Affiliation:
École Supérieure de Physique et de Chimie Industrielles, Paris 5, France Department of Geochemistry and Mineralogy, The Pennsylvania State University, University Park, Pennsylvania
G. W. Brindley
Affiliation:
École Supérieure de Physique et de Chimie Industrielles, Paris 5, France Department of Geochemistry and Mineralogy, The Pennsylvania State University, University Park, Pennsylvania
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous studies of diffraction band profiles of montmorillonite are extended to the 13, 20 band which, for reasons discussed, is more sensitive to structural details than the diffraction bands considered previously. Hydration of Na-montmorillonite produces appreciable sharpening of this band, indicating, contrary to previous results, that the water layers have at least a partially ordered arrangement. For Cs-montmorillonite, the single water layer hydrate shows only a small sharpening of the band profile, possibly attributable to the water layer, but which clearly indicates that the Cs ions cannot be significantly displaced from their positions in the anhydrous material. For Ba-montmorillonite, the two-layer hydrate shows a small broadening of the diffraction band, which is possibly the result of a partial ordering of the water layers together with a movement of the Ba ions away from the hexagonal holes.

Type
Symposium on X-Ray Diffraction Analysis
Copyright
Copyright © 1967, The Clay Minerals Society

References

Brindley, W. Jr. and Mering, J. (1951) Diffractions des rayons X par les structures en couches désordonnées: Acta Cryst. 4, 441–7.CrossRefGoogle Scholar
Longuet-Escard, J., Mering, J. and Brindley, G. W. (1960) Analyse des profils des bandes de diffraction bidimensionelle dans la montmorillonite. Influence des cations échangeables: CM. Acad. Sci., Paris 251, 106–8.Google Scholar
Longuet-Escard, J., Mering, J. and Brindley, G. W. (1961) Etude des profils des bandes de diffraction dans la montmorillonite; influence de l'hydratation et de la nature des cations échangeables: International Geol. Congr. XXI Session, part XXIV, 1727.Google Scholar
Mering, J. and Oberlin, A. (1967) Electron-optical study of smectites: Clays and Clay Minerals, Proc. 15th Conf., Pergamon Press, New York, this volume, p. 3.Google Scholar
Pezerat, H. and Mering, J. (1954) Influence des substitutions isomorphes sur les paramètres de structure des phyllites: Clay Min. Bull. 2, 156–61.CrossRefGoogle Scholar
Pezerat, H. and Mering, J. (1958) Détection des cations échangeables de la montmorillonite par l'emploi des séries différences: Bull. Groupe Fr. Argiles 10, 25–6.Google Scholar
Warren, B. E. (1941) X-ray diffraction in random-layer lattices: Phys. Rev. 59, 693–8.CrossRefGoogle Scholar