Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-16T02:11:04.160Z Has data issue: false hasContentIssue false

Dye Adsorption as a Method of Identifying Clays

Published online by Cambridge University Press:  01 January 2024

Charles G. Dodd*
Affiliation:
Production Research Division, Development and Research Department, Continental Oil Company, Ponca City, Oklahoma, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dyestuffs and other reagents which exhibit characteristic colors when adsorbed on clay granules frequently have been employed as aids in clay identification. The colors generally are believed to result from pleochroic effects and acid-base or oxidation-reduction reaction mechanisms. Certain aniline dyes, solutions of which vary in color according to their hydrogen ion content, may be used to indicate the relative acidity of clay.surfaces as well as to heighten the natural pleochroism of kaolin minerals. When n clay sample has been pretreated with acid, the colors assumed by the adsorbed dye depend on the characteristic base exchange capacities of the various clay mineral groups present.

Aromatic diamines, amino phenols, and other compounds which can be oxidized to colored semiquinone cations permit particularly sensitive and positive identification of members of the montmorillonoid family and certain other three-layer clay minerals. Theories concerning the nature of this apparently catalytic oxidation on clay surfaces are inadequate to explain the reactions. New concepts and additional experimental information are needed.

Type
Part III—Methods of Identifying Clays and the Interpretation of Results
Copyright
© Clay Minerals Society 1952

References

Selected References

Brown, G, Brindley, G W, Mica clay minerals. II. Nomenclatnre of the mica clay minerals X-ray identiticarion and crystal structures of clay minerals 1951 London The Minoralog. Soc. 157.Google Scholar
Eiseuack, A, Katalysche Einwirkung von Tonen und anderen silikatischen Mineralien und verbindungen anf aromatische Amine und Phenole Zentralblatt für Mineralogie. Geologie und Paiiontologie 1938 1938 305308.Google Scholar
Endell, J Zorn, R Hofmann, U, Über die Prüfung auf Montmorillonit mit Benzidin Angew. Chem. 1941 54 376377 10.1002/ange.19410543304.CrossRefGoogle Scholar
Faust, G. T., 1940. Staining of clay minerals as a rapid means of identification in natural and beneficiated products: U. S. Bur. Alines Rept. Inv. 3522, 21 pp.Google Scholar
Grandjean, M F, Goloration des argiles par les couleurs d’aniline Soc. française mineralogie Bull. 1909 408419.CrossRefGoogle Scholar
Hamideton, W W Dodd, V G, A qualitative color test for rapid identification of the clav mineral groups Econ, Geologv 1953 48 130140.Google Scholar
Hauser, E A Le Beau, D S Pevear, P P, The surface structure and composition of colloidal siliceous matter Jour. Phys. Colloid Chemistry 1951 55 0879.Google ScholarPubMed
Hauser, E A Leggett, M B, Color reactions between (days and amines Am. Chein. Soc. Jour. 1940 02 1811–14 10.1021/ja01864a046.Google Scholar
Hendricks, S B Alexander, L T, A qualitative color test for the montmorillonite tvpe of clay minerals Am. Soc. Agron. Jour. 1940 32 453458 10.2134/agronj1940.00021962003200060006x.CrossRefGoogle Scholar
Kerr, P F et al. , Am. Petroleum Tust. Kos. Proj. 49, Prelim. Repts. 1 to 8 1949 New York Columbia Cniversity.Google Scholar
Kerr, P F Kulp, J L Hamilton, P K, Differential thermal analyses of reference clay mineral specimens Am. Petroleum Inst. Kos. Proj. 49, Prelim. Rept. 3 1949 New York Columbia Iniversity 34.Google Scholar
Krüger, D Oberlies, F, Struktur und Farbrekatiouen von Montinorilloniterden Xaturwissenschaften 1943 31 92 10.1007/BF01495301.CrossRefGoogle Scholar
Merwin, H E Posnjak, E, Clays and other minerals from the deep sea. hot springs, and weathered rocks Am, Jour. Sci., 5th ser. 1938 35A 179184.Google Scholar
Michaelis, L, Semiquinones, the intermediate steps of reversible organic oxidation-reduction Chem. Rev. 1935 10 243286 10.1021/cr60054a004.CrossRefGoogle Scholar
Mielenz, R C King, M E, Identification of clay minerals bv staining tests Am. Soc. for Testing Materials Proc 1951 51 12131233.Google Scholar
Mielenz, R C King, M E Schieltz, X C, Analytical data on reference clay minerals Am, Petroleum Inst. Res. Proj. 49, Prelim. Rept. 7 1950 New York Columbia University 135.Google Scholar
Page, J B, Unreliability of the benzidine color reaction as a test for montmorillonite Soil Sci. 1941 51 133140 10.1097/00010694-194102000-00004.CrossRefGoogle Scholar
Ross, C S Hendricks, S B, Minerals of the montmorillonite group, their origin and relation to soils and clays U. S. Geol. Survey Prof. Paper 205-B 1945 2379.CrossRefGoogle Scholar
Ross, C S Kerr, P F, The kaolin minerals U. S. Geol, Survey, Prof, Paper 105-E 1931 151180.CrossRefGoogle Scholar
Siegl, W, Über den Nachweis von Montmorillonit mit Benzidin Neues Jahrb. Mineral. Geol. Monatsh. A 1945 48 4043.Google Scholar
Suida, W, Sitzungsber. K. Akad. Wiss., (Mathe matischilatur Wissenschaftliehe Klasse) 1904 113 725.Google Scholar
Thomas, C E, Chemistry of cracking catalysts Ind. and Eng. Chemistry 1949 41 25642873 10.1021/ie50479a042.CrossRefGoogle Scholar
Weil-Malherbe, H Weiss, J, Colour reactions and adsorptions of some aluminosilicates Chem. Soc. Jour. 1948 1948 2164–69 10.1039/jr9480002164.Google Scholar
Weiss, J, Note on some free radicals from benzidine and its derivatives Chem. and Ind 1938 57 517518 10.1002/jctb.5000572205.Google Scholar
Weyl, W A, Active oxygen formed at surface of silica and clay as possible cause of silicosis Am. Ceramic Soc. Bull. 1949 28 362.Google Scholar