Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T00:48:28.615Z Has data issue: false hasContentIssue false

Genetic Factors and Neurocognitive Traits

Published online by Cambridge University Press:  07 November 2014

Abstract

Genetic contributions to phenotypic variation in general intelligence have been studied extensively. Less research has been conducted on genetic contributions to specific cognitive abilities, such as attention, memory, working memory, language, and motor functions. However, the existing data indicate a significant role of genetic factors in these abilities. Stages of information processing, such as sensory gating, early sensory registration, and cognitive analysis, also show evidence of genetic contributions. Recent molecular studies have begun to identify candidate genes for specific cognitive functions. Future research, identifying endophenotypes based on cognitive profiles of neuropsychiatric disorders, may also assist in the detection of genes that increase susceptibility to major psychiatric disorders.

Type
Feature Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Plomin, R, Kosslyn, SM. Genes, brain and cognition. Nat Neurosci. 2001;4:11531154.CrossRefGoogle ScholarPubMed
2.Swan, GE, LaRue, A, Carmelli, D, Reed, TE, Fabsitz, RR. Decline in cognitive performance in aging twins. Heritability and biobehavioral predictors from the National Heart, Lung, and Blood Institute Twin Study. Arch Neurol. 1992;49:476481.CrossRefGoogle ScholarPubMed
3.Knopik, VS, DeFries, JC. Etiology of covariation between reading and mathematics performance: a twin study. Twin Res. 1999;2:226234.CrossRefGoogle ScholarPubMed
4.Wright, M, De Geus, E, Ando, J, et al.Genetics of cognition: outline of a collaborative twin study. Twin Res. 2001;4:4856.CrossRefGoogle ScholarPubMed
5.Johansson, B, Whitfield, K, Pedersen, NL, Hofer, SMAhern, F, McClearn, GE. Origins of individual differences in episodic memory in the oldest-old: a population-based study of identical and same-sex fraternal twins aged 80 and older. J Gerontol B Psychol Sci Soc Sci. 1999;54:P173P179.CrossRefGoogle ScholarPubMed
6.Thompson, PM, Cannon, TD, Narr, KL, et al.Genetic influences on brain structure. Nat Neurosci. 2001;4:12531258.CrossRefGoogle ScholarPubMed
7.Fox, PW, Hershberger, SL, Bouchard, TJ Jr.Genetic and environmental contributions to the acquisition of a motor skill. Nature 1996;384:356358.CrossRefGoogle Scholar
8.Fan, J, Wu, Y, Fossella, JA, Posner, MI. Assessing the heritability of attentional networks. BMC Neurosci. 2001;2:14.CrossRefGoogle ScholarPubMed
9.Swan, GE, Carmelli, D, Rosenman, RH, Fabsitz, RR, Christian, JC. Smoking and alcohol consumption in adult male twins: genetic heritability and shared environmental influences. J Subst Abuse. 1990;2:3950.CrossRefGoogle ScholarPubMed
10.Brandt, J, Welsh, KA, Breitner, JC, Folstein, MF, Helms, M, Christian, JC. Hereditary influences on cognitive functioning in older men. A study of 4000 twin pairs. Arch Neurol. 1993;50:599603.CrossRefGoogle Scholar
11.Finkel, D, McGue, M. Age differences in the nature and origin of individual differences in memory: a behavior genetic analysis. Int J Aging Hum Dev. 1998;47:217239.CrossRefGoogle ScholarPubMed
12.Plomin, R. Genetics and general cognitive ability. Nature. 1999;402(6761 suppl):C25C29.CrossRefGoogle ScholarPubMed
13.Bouchard, TJ Jr.Genetic and environmental influences on adult intelligence and special mental abilities. Hum Biol. 1998;70:257279.Google ScholarPubMed
14.Plassman, BL, Welsh, KA, Helms, M, Brandt, J, Page, WF, Breitner, JC. Intelligence and education as predictors of cognitive state in late life: a 50-year follow-up. Neurology. 1995;45:14461450.CrossRefGoogle Scholar
15.Rietveld, MJ, van Baal, GC, Dolan, CV, Boomsma, DI. Genetic factor analyses of specific cognitive abilities in 5-year-old Dutch children. Behav Genet. 2000;30:2940.CrossRefGoogle ScholarPubMed
16.Finkel, D, Pedersen, NL, McGue, M, McClearn, GE. Heritability of cognitive abilities in adult twins: comparison of Minnesota and Swedish data. Behav Genet. 1995;25:421431.CrossRefGoogle ScholarPubMed
17.Stoolmiller, M. Implications of the restricted range of family environments for estimates of heritability and nonshared environment in behavior-genetic adoption studies. Psychol Bull. 1999;125:392409.CrossRefGoogle ScholarPubMed
18.Rowe, DC, Jacobson, KC, Van den Oord, EJ. Genetic and environmental influences on vocabulary IQ: parental education level as moderator. Child Dev. 1999;70:11511162.CrossRefGoogle ScholarPubMed
19.Furlow, FB, Armijo-Prewitt, T, Gangestad, SW, Thornhill, R. Fluctuating asymmetry and psychometric intelligence. Proc R Soc Lond B Biol Sci. 1997;264:823829.CrossRefGoogle ScholarPubMed
20.Devlin, B, Daniels, M, Roeder, K. The heritability of IQ. Nature. 1997;388:468471.CrossRefGoogle ScholarPubMed
21.Faraone, SV, Seidman, LJ, Kremen, WS, Toomey, R, Pepple, JR, Tsuang, MT. Neuropsychologic functioning among the nonpsychotic relatives of schizophrenic patients: the effect of genetic loading. Biol Psychiatry. 2000;48:120126.CrossRefGoogle Scholar
22.Cornblatt, BA, Risch, NJ, Faris, G, Friedman, D, Erlenmeyer-Kimling, L. The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res. 1988;26:223238.CrossRefGoogle ScholarPubMed
23.Cornblatt, BA, Malhotra, AK. Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. Am J Med Genet. 2001;105:1115.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
24.Cornblatt, BA, Keilp, JG. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull. 1994;20:3146.CrossRefGoogle ScholarPubMed
25.Egan, MF, Goldberg, TE, Gscheidle, T, Weirich, M, Bigelow, LB, Weinberger, DR. Relative risk of attention deficits in siblings of patients with schizophrenia. Am J Psychiatry. 2000;157:13091316.CrossRefGoogle ScholarPubMed
26.Keefe, RS, Silverman, JM, Mohs, RC, et al.Eye tracking, attention, and schizotypal symptoms in nonpsychotic relatives of patients with schizophrenia. Arch Gen Psychiatry. 1997;54:169176.CrossRefGoogle ScholarPubMed
27.Chen, WJ, Liu, SK, Chang, CJ, Lien, YJ, Chang, YH, Hwu, HG. Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry. 1998;155:12141220.CrossRefGoogle ScholarPubMed
28.Bishop, DV, Bishop, SJ, Bright, P, James, C, Delaney, T, Tallal, P. Different origin of auditory and phonological processing problems in children with language impairment: evidence from a twin study. J Speech Lang Hear Res. 1999;42:155168.CrossRefGoogle ScholarPubMed
29.Cannon, TD, van Erp, TG, Huttunen, M, et al.Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry. 1998;55:10841091.CrossRefGoogle ScholarPubMed
30.Cannon, TD, Gasperoni, TL, van Erp, TG, Rosso, IM. Quantitative neural indicators of liability to schizophrenia: implications for molecular genetic studies. Am J Med Genet. 2001;105:1619.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
31.Castles, A, Datta, H, Gayan, J, Olson, RK. Varieties of developmental reading disorder: genetic and environmental influences. J Exp Child Psychol. 1999;72:7394.CrossRefGoogle ScholarPubMed
32.van der Lely, HK, Stollwerck, L. A grammatical specific language impairment in children: an autosomal dominant inheritance? Brain Lang. 1996;52:484504.CrossRefGoogle ScholarPubMed
33.Williams, LR, Gross, JB. Heritability of motor skill. Acta Genet Med Gemellol (Roma) 1980;29:127136.Google ScholarPubMed
34.Freedman, R, Coon, H, Myles-Worsley, M, et al.Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci U S A. 1997;94:587592.CrossRefGoogle ScholarPubMed
35.Javitt, DC, Doneshka, P, Grochowski, S, Ritter, W. Impaired mismatch negativity generation reflects widespread dysfunction of working memory in schizophrenia. Arch Gen Psychiatry. 1995;52:550558.CrossRefGoogle ScholarPubMed
36.Shelley, AM, Grochowski, S, Lieberman, JA, Javitt, DC. Premature disinhibition of P3 generation in schizophrenia. Biol Psychiatry. 1996;39:714719.CrossRefGoogle ScholarPubMed
37.Waldo, MC, Adler, LE, Leonard, S, et al.Familial transmission of risk factors in the first-degree relatives of schizophrenic people. Biol Psychiatry. 2000;47:231239.CrossRefGoogle ScholarPubMed
38.Young, DA, Waldo, M, Rutledge, JH III, Freedman, R. Heritability of inhibitory gating of the P50 auditory-evoked potential in monozygotic and dizygotic twins. Neuropsychobiology. 1996;33:113117.CrossRefGoogle ScholarPubMed
39.Cadenhead, KS, Light, GA, Geyer, MA, Braff, DL. Sensory gating deficits assessed by the P50 event-related potential in subjects with schizotypal personality disorder. Am J Psychiatry. 2000;157:5559.CrossRefGoogle ScholarPubMed
40.Johnson, R Jr.Event-related potential insights into altered sensory and cognitive processing in dementia. In: Boller, F, Grafman, J, eds. Handbook of Neuropsychology. New York, NY: Elsevier; 1995:241267.Google Scholar
41.Katsanis, J, Iacono, WG, McGue, MK, Carlson, SR. P300 event-related potential heritability in monozygotic and dizygotic twins. Psychophysiology. 1997;34:4758.CrossRefGoogle ScholarPubMed
42.Almasy, L, Porjesz, B, Blangero, J, et al.Heritability of event-related brain potentials in families with a history of alcoholism. Am J Med Genet. 1999;88:383390.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
43.O'Connor, S, Morzorati, S, Christian, JC, Li, TK. Heritable features of the auditory oddball event-related potential: peaks, latencies, morphology and topography. Electroencephalogr Clin Neurophysiol. 1994;92:115125.CrossRefGoogle ScholarPubMed
44.Johnson, R Jr.On the neural generators of the P300 component of the eventrelated potential. Psychophysiology. 1993;30:9097.CrossRefGoogle ScholarPubMed
45.Johnson, MK, Kounios, J, Nolde, SF. Electrophysiological brain activity and memory source monitoring. Neuroreport. 1996;7:29292932.CrossRefGoogle ScholarPubMed
46.Reinvang, I. Validation of reaction time in continuous performance tasks as an index of attention by electrophysiological measures. J Clin Exp Neuropsychol. 1998;20:885897.CrossRefGoogle ScholarPubMed
47.Weisbrod, M, Hill, H, Niethammer, R, Sauer, H. Genetic influence on auditory information processing in schizophrenia: P300 in monozygotic twins. Biol Psychiatry. 1999;46:721725.CrossRefGoogle ScholarPubMed
48.Polich, J, Bloom, FE. P300 from normals and adult children of alcoholics. Alcohol. 1987;4:301305.CrossRefGoogle ScholarPubMed
49.Jentsch, JD, Tran, A, Le, D, Youngren, KD, Roth, RH. Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology 1997;17:9299.CrossRefGoogle ScholarPubMed
50.Gasparini, M, Fabrizio, E, Bonifati, V, Meco, G. Cognitive improvement during Tolcapone treatment in Parkinson's disease. J Neural Transm. 1997;104:887894.CrossRefGoogle ScholarPubMed
51.Braver, TS, Barch, DM, Cohen, JD. Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry. 1999;46:312328.CrossRefGoogle ScholarPubMed
52.Karoum, F, Chrapusta, SJ, Egan, MF. 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem. 1994;63:972979.CrossRefGoogle ScholarPubMed
53.Lachman, HM, Papolos, DF, Saito, T, Yu, YM, Szumlanski, CL, Weinshilboum, RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996;6:243250.CrossRefGoogle ScholarPubMed
54.Egan, MF, Goldberg, TE, Kolachana, BS, et al.Effect of COMT Vall08/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A. 2001;98:69176922.CrossRefGoogle ScholarPubMed
55.Malhotra, AK, Kestler, LJ, Mazzanti, C, Bates, JA, Goldberg, T, Goldman, D. A functional polymorphism in the COMT gen and performance on a test of prefrontal cognition. Am J Psychiatry. In press.Google Scholar
56.Bilder, RM, Volavka, J, Czabor, P, Malhotra, AK, et al.Neurocognitive correlates of the COMT val158met polymorphism in chronic schizophrenia. Biol Psychiatry. In press.Google Scholar