Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:29:48.198Z Has data issue: false hasContentIssue false

The dark side of dopaminergic therapies in Parkinson’s disease: shedding light on aberrant salience

Published online by Cambridge University Press:  07 March 2017

Michele Poletti*
Affiliation:
Department of Mental Health and Pathological Addiction, Azienda Unità Sanitaria Locale Reggio Emilia, Reggio nell’Emilia, Italy
*
*Address for correspondence: Michele Poletti, Department of Mental Health and Pathological Addiction, AUSL of Reggio Emilia, Via Amendola 2, 52100, Reggio Emilia, Italy. (Email: michele.poletti2@ausl.re.it)

Abstract

Psychotic subjects and patients with Parkinson’s disease (PD) “on” dopaminergic drugs, especially on dopamine agonists, present a hyperdopaminergic state that interferes with learning processing. These clinical populations present with distinct alterations of learning that share an increased potential motivational significance of stimuli: psychotic subjects may attribute salience to neutral stimuli, while medicated PD patients may overvalue rewards. Herein is discussed the speculative hypothesis that the hyperdopaminergic state induced by dopaminergic treatments, especially with dopamine agonists, may also facilitate the attribution of salience to neutral stimuli in PD patients, altering the physiological attribution of salience. Preliminary empirical evidence is in agreement with this speculative hypothesis, which needs further empirical investigation. The clinical implications of this hypothesis are discussed in relation to behavioral addictions, psychosis proneness, and enhanced creativity in medicated PD patients.

Type
Opinions
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Winton-Brown, TT, Fusar-Poli, P, Ungless, MA, Howes, OD. Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci. 2014; 37(2): 8594. Epub ahead of print Jan 2.Google Scholar
2. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003; 160(1): 1323. Available at: http://ajp.psychiatryonline.org/doi/pdf/10.1176/appi.ajp.160.1.13.Google Scholar
3. Heinz, A, Schlagenhauf, F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull. 2010; 36(3): 472485. Epub ahead of print May 7. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879696/.Google Scholar
4. Glimcher, PW. Understanding dopamine and reinforcement learning: the dopamine reward prediction error. Proc Natl Acad Sci U S A. 2011; 108(Suppl 3): 1564715654. Epub ahead of print Mar 9. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176615/.Google Scholar
5. Boehme, R, Deserno, L, Gleich, T, et al. Aberrant salience is related to reduced reinforcement learning signals and elevated dopamine synthesis capacity in healthy adults. J Neurosci. 35(28): 1010310111. Available at: http://www.jneurosci.org/content/35/28/10103.Google Scholar
6. Murray, GK, Corlett, PR, Clark, L, et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry. 2008; 13(239): 267276. Epub ahead of print Aug 7, 2007. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2564111/.Google Scholar
7. Roiser, JP, Stephan, KE, den Ouden, HE, Barnes, TR, Friston, KJ, Joyce, EM. Do patients with schizophrenia exhibit aberrant salience? Psychol Med. 2009; 39(2): 199209. Epub ahead of print Jun 30, 2008. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635536/.Google Scholar
8. Roiser, JP, Howes, OD, Chaddock, CA, Joyce, EM, McGuire, P. Neural and behavioral correlates of aberrant salience in individuals at risk for schizophrenia. Schizophr Bull. 2013; 39(6): 13281336. Epub ahead of print Dec 12, 2012. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796080/.Google Scholar
9. Howes, OD, Nour, MN. Dopamine and the aberrant salience hypothesis of schizophrenia. World Psychiatry. 2016; 15(1): 34. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780291/.Google Scholar
10. Poewe, W, Antonini, A, Zijlmans, JC, Burkhard, PR, Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: an old drug still going strong. Clin Interv Aging. 2010; 7(5): 229238. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938030/.Google Scholar
11. Bonuccelli, U, Del Dotto, P, Rascol, O. Role of dopamine receptor agonists in the treatment of early Parkinson’s disease. Parkinsonism Relat Disord. 2009; 15(Suppl 4): S44S53.Google Scholar
12. Kish, SJ, Shannak, K, Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. N Engl J Med. 1988; 318(14): 876880.Google Scholar
13. Gotham, A, Brown, R, Marsden, C. Levodopa treatment may benefit or impair frontal function in Parkinson’s disease. Lancet. 1986; 2(8513): 970971.Google Scholar
14. Shingai, Y, Tateno, A, Arakawa, R, et al. Age-related decline in dopamine transporter in human brain using PET with a new radioligand [18F]FE–PE2I. Ann Nucl Med. 2014; 28(3): 220226. Epub ahead of print Jan 3.Google Scholar
15. MacDonald, AA, Monchi, O, Seergobin, KN, Ganjavi, H, Tamjeedi, R, MacDonald, PA. Parkinson’s disease duration determines effects of dopaminergic therapy on ventral striatum function. Mov Disord. 2013; 28(2): 153160. Epub ahead of print Nov 19, 2012.Google Scholar
16. Vaillancourt, DE, Schonfeld, D, Kwak, Y, Bohnen, NI, Seidler, R. Dopamine overdose hypothesis: evidence and clinical implications. Mov Disord. 2013; 28(14): 19201929. Epub ahead of print Oct 9. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859825/.Google Scholar
17. Grace, AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction. 2000; 95(Suppl 2): S119S128.Google Scholar
18. Poletti, M, Bonuccelli, U. Acute and chronic cognitive effects of levodopa and dopamine agonists in patients with Parkinson’s disease: a review. Ther Adv Psychopharmacol. 2013; 3(2): 101113. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805397/.Google Scholar
19. Shiner, T, Symmonds, M, Guitart-Masip, M, Fleming, SM, Friston, KJ, Dolan, RJ. Dopamine, salience and response set shifting in prefrontal cortex. Cereb Cortex. 2015; 25(10): 36293639. Epub ahead of print Sep 21, 2014. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585507/.Google Scholar
20. Voon, V, Mehta, AR, Hallett, M. Impulse control disorders in Parkinson’s disease: recent advances. Curr Opin Neurol. 2011; 24(4): 324330. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154756/.Google Scholar
21. Ceravolo, R, Frosini, D, Rossi, C, Bonuccelli, U. Spectrum of addictions in Parkinson’s disease: from dopamine dysregulation syndrome to impulse control disorders. J Neurol. 2010; 257(Suppl 2): S276S283.Google Scholar
22. Giovannoni, G, O’Sullivan, JD, Turner, K, Manson, AJ, Lees, AJ. Hedonistic homeostatic dysregulation in patients with Parkinson’s disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry. 2000; 68(4): 423428. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1736875/.Google Scholar
23. Dagher, A, Robbins, TW. Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron. 2009; 61(4): 502510. Available at: http://www.cell.com/neuron/fulltext/S0896-6273(09)00124-X.Google Scholar
24. Voon, V, Rizos, A, Chakravarty, R, et al. Impulse control disorders in Parkinson’s disease: decreased striatal transporter levels. J Neurol Neurosurg Psychiatry. 2014; 85(2): 148152. Epub ahead of print Jul 30, 2013. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031642/.Google Scholar
25. Piray, P, Zeighami, Y, Bahrami, F, Eissa, AM, Hewedi, DH, Moustafa, AA. Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. J Neurosci. 2014; 34(23): 78147824. Available at: http://www.jneurosci.org/content/34/23/7814.long.Google Scholar
26. Fénelon, G. Psychosis in Parkinson’s disease: phenomenology, frequency, risk factors, and current understanding of pathophysiologic mechanisms. CNS Spectr. 2008; 13(Suppl 4): 1825.Google Scholar
27. Braak, H, Del Tredici, K, Rub, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003; 24(2): 197211.Google Scholar
28. Stahl, SM. Parkinson’s disease psychosis as a serotonin–dopamine imbalance syndrome. CNS Spectr. 2016; 21(5): 355359.Google Scholar
29. Nagy, H, Levy-Gigi, E, Somlaiu, Z, Takáts, A, Bereczki, D, Kéri, S. The effect of dopamine agonists on adaptive and aberrant salience in Parkinson’s disease. Neuropsychopharmacology. 2012; 37(4): 950958. Epub ahead of print Nov 16, 2011. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280658/.Google Scholar
30. Poletti, M, Frosini, D, Pagni, C, et al. A pilot psychometric study of aberrant salience state in patients with Parkinson’s disease and its association with dopamine replacement therapy. Neurol Sci. 2014; 35(10): 16031605. Epub ahead of print Jul 11.Google Scholar
31. Cicero, DC, Kerns, JG, McCarthy, DM. The Aberrant Salience Inventory: a new measure of psychosis proneness. Psychol Assess. 2010; 22(3): 688701.Google Scholar
32. Schmidt, K, Roiser, JP. Assessing the construct validity of aberrant salience. Front Behav Neurosci. 2009; 3(58): 19. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802547/pdf/fnbeh-03-058.pdf.Google Scholar
33. Lubow, RE. Latent inhibition. Psychol Bull. 1973; 79: 398407.Google Scholar
34. Lubow, RE. Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull. 2005; 31(1): 139155. Epub ahead of print Feb 16. Available at: https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbi005.Google Scholar
35. Polner, B, Moustafa, AA, Nagy, H, Takáts, A, Győrfi, O, Kéri, S. Dopamine improves exploration after expectancy violations and induces psychotic-like experiences in patients with Parkinson’s disease. Neurosci Lett. 2016; 616: 132137. Epub ahead of print Jan 26.Google Scholar
36. Gyorfi, O, Nagy, H, Bokor, M, Kelemen, O, Kéri, S. A single dose of L-DOPA changes perceptual experiences and decreases latent inhibition in Parkinson’s disease. J Neural Transm (Vienna). 2016; 124(1): 113119. Epub ahead of print Oct 7.Google Scholar
37. Housden, CR, O’Sullivan, SS, Joyce, EM, Lees, AJ, Roiser, JP. Intact reward learning but elevated delay discounting in Parkinson’s disease patients with impulsive-compulsive spectrum behaviors. Neuropsychopharmacology. 2010; 35(11): 21552164. Epub ahead of print Jul 14. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055316/.Google Scholar
38. Pettorusso, M, Fasano, A, De Risio, L, et al. Punding in non-demented Parkinson’s disease patients: relationship with psychiatric and addiction spectrum comorbidity. J Neurol Sci. 2016; 15(362): 344347. Epub ahead of print Feb 8.Google Scholar
39. Pontieri, FE, Assogna, F, Pellicano, C, et al. Sociodemographic, neuropsychiatric and cognitive characteristics of pathological gambling and impulse control disorders NOS in Parkinson’s disease. Eur Neuropsychopharmacol. 2015; 25(1): 6976. Epub ahead of print Nov 18, 2014.Google Scholar
40. Poletti, M, Logi, C, Lucetti, C, et al. A single-centre, cross-sectional, prevalence study of impulse control disorders in Parkinson’s disease: association with dopaminergic drugs. J Clin Psychopharmacol. 2013; 33(5): 691694.Google Scholar
41. Cilia, R, Siri, C, Canesi, M, et al. Dopamine dysregulation syndrome in Parkinson’s disease: from clinical and neuropsychological characterization to management and long-term outcome. J Neurol Neurosurg Psychiatry. 2014; 85(3): 311318. Epub ahead of print Apr 16, 2013. Available at: http://jnnp.bmj.com/content/85/3/311.long.Google Scholar
42. Poletti, M, Lucetti, C, Baldacci, F, Del Dotto, P, Bonuccelli, U. Concomitant development of hypersexuality and delusional jealousy in patients with Parkinson’s disease: a case series. Parkinsonism Relat Disord. 2014; 20(11): 12901292. Epub ahead of print Sep 18.Google Scholar
43. Cannas, A, Solla, P, Floris, G, Tacconi, P, Marrosu, F, Marrosu, MG. Othello syndrome in Parkinson disease patients without dementia. Neurologist. 2009; 15(1): 3436.Google Scholar
44. Kiziltan, G, Ozekmekci, S, Ertan, S, Ertan, T, Erginöz, E. Relationship between age and subtypes of psychotic symptoms in Parkinson’s disease. J Neurol . 2007; 254(4): 448452. Epub ahead of print Mar 31.Google Scholar
45. Poletti, M, Perugi, G, Logi, C, et al. Dopamine agonists and delusional jealousy in Parkinson’s disease: a cross-sectional prevalence study. Mov Disord. 2012; 27(13): 16791682. Epub ahead of print Nov 13.Google Scholar
46. Stefanis, N, Bozi, M, Christodoulou, C, et al. Isolated delusional syndrome in Parkinson’s disease. Parkinsonism Relat Disord. 2010; 16(8): 550552.Google Scholar
47. Faust-Socher, A, Kenett, YN, Cohen, OS, Hassin-Baer, S, Inzelberg, R. Enhanced creativity thinking under dopaminergic therapy in Parkinson disease. Ann Neurol. 2014; 75(6): 935942. Epub ahead of print Jun 10.Google Scholar
48. Canesi, M, Rusconi, ML, Isaias, IU, Pezzoli, G. Artistic productivity and creative thinking in Parkinson’s disease. Eur J Neurol. 2012; 19(3): 468472. Epub ahead of print Oct 10, 2011.Google Scholar
49. Polner, B, Nagy, H, Takáts, A, Keri, S. Kiss of the muse for the chosen ones: de novo schizotypal traits and lifetime creative achievement are related to changes in divergent thinking during dopaminergic therapy in Parkinson’s disease. Psychol Aesthet Creat Arts. 2015; 9(3): 328339.Google Scholar