Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T18:01:36.525Z Has data issue: false hasContentIssue false

The Neurodevelopmental Hypothesis of Schizophrenia: Genetic Investigations

Published online by Cambridge University Press:  07 November 2014

Abstract

Twin, family, and adoption studies indicate that genetic factors play a major role in predisposition to schizophrenia. To date, molecular genetic studies have implicated many different chromosomal locations for the disorder. However, no one site replicates across the majority of investigations. This creates an impasse in the study of schizophrenia genetics, because of the large number of chromosomal sites that require further detailed research. It is difficult to plan to move ahead with expensive and labor-intensive research in an attempt to determine the etiologie genetic factor, when any given site proves to be only weakly positive. Therefore, the use of a hypothesis-driven approach may be cost effective, and may ultimately have more power to detect etiologie genes. Several lines of evidence suggest that a neurodevelopmental defect may play an important role in the etiology of this disorder. Neurodevelopment is a complex process in which genetic and nongenetic factors may interact to create the mature differentiated neuron, with its particular network of synaptic connections. A reasonable chance exists that polymorphisms of the genes that control normal development of the central nervous system (CNS) may produce a slightly altered trajectory of brain development, predisposing individuals to schizophrenia. This assumption has led geneticists to begin to study neurodevelopmental genes in schizophrenia subjects. This article reviews and discusses genetic studies of some developmental genes in schizophrenia. Genetic association and linkage studies of neurotrophic factors (brain-derived neurotrophic factor, or BDNF, and neurotrophin-3, or NT-3), neuronal cell adhesion molecule (NCAM), synapsin, and synaptosome-associated protein with a mass of 25 kd (SNAP-25) have proven to be of most interest.

Type
Feature Articles
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva, Switzerland: World Health Organization; 1992.Google Scholar
2.McGue, M, Gottesman, LL. The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci. 1991;240:174181.CrossRefGoogle ScholarPubMed
3.Cardno, AG, Marshall, EJ, Coid, B, et al.Heritability estimates for psychotic disorders: the Maudsley Twin Psychosis Series. Arch Gen Psychiatry. 1999;56:162168.CrossRefGoogle ScholarPubMed
4.Seeman, P, Chau-Wong, M, Tedesco, J, Wong, K. Brain receptors for antipsychotic drags and dopamine: direct binding assays. Proc Natl Acad Sci USA. 1975;72:43764380.CrossRefGoogle Scholar
5.Liddle, PF. Brain imaging. In: Hisch, SR, Weinberger, DR, eds. Schizophrenia. London, UK: Blackwood; 1995:425439.Google ScholarPubMed
6.Eagles, JM, Gibson, I, Bremner, MH, et al.Obstetric complications in DSM-III schizophrenics and their siblings. Lancet. 1990;335:11391141.CrossRefGoogle ScholarPubMed
7.Mednick, SA, Machon, RA, Huttunen, MO, Bonnet, D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 1988;45:189192.CrossRefGoogle Scholar
8.Feinberg, I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1983;17:319334.CrossRefGoogle Scholar
9.Pettegrew, JW. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics: a pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry. 1991;48:563568.CrossRefGoogle ScholarPubMed
10.Murray, RM, O'Callaghan, E, Castle, DJ, Lewis, SW. A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull. 1992;18:319332.CrossRefGoogle Scholar
11.Benes, FM, Davidson, J, Bird, ED. Quantitative cytoarchi-tectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry. 1986;43:3135.CrossRefGoogle ScholarPubMed
12.Johnstone, EC, Crow, TJ, Frith, CD, Husband, J, Kreel, L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet. 1976;9:2426.Google Scholar
13.Weinberger, DR, Torrey, EF, Neopytides, A, Wyatt, RJ. Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch Gen Psychiatry. 1979;36:735739.CrossRefGoogle ScholarPubMed
14.Owens, DG, Johnstone, EC, Crow, TJ, Frith, CD, Jagoe, JR, Kreel, L. Lateral ventricular size in schizophrenia: relationship to the disease process and its clinical manifestations. Psychol Med. 1985;15:2741.CrossRefGoogle Scholar
15.Crow, TJ, Colter, N, Brown, R, Bruton, CJ, Johnston, EC. Lateralised asymmetry of temporal horn enlargement in schizophrenia. Schizophr Res. 1988;1:155156.Google Scholar
16.DeLisi, LE, Dauphinais, ID, Gershon, ES. Perinatal complications and reduced size of brain limbic structures in familial schizophrenia. Schizophr Bull. 1988;14:185191.CrossRefGoogle ScholarPubMed
17.Johnstone, EC, Owens, DG, Crow, TJ, et al.Temporal lobe structure as determined by nuclear magnetic resonance in schizophrenia and bipolar affective disorder. J Neurol Neurosurg Psychiatry. 1989;52:736741.CrossRefGoogle ScholarPubMed
18.Rossi, A, Stratta, P, D'Albenzio, L, et al.Reduced temporal lobe areas in schizophrenia: preliminary evidence from a controlled multiplanar magnetic resonance imaging study. Biol Psychiatry. 1990;27:6168.CrossRefGoogle ScholarPubMed
19.Young, AH, Blackwood, DH, Roxborough, H, McQueen, JK, Martin, MJ, Kean, D. A magnetic resonance imaging study of schizophrenia: brain structure and clinical symptoms. Br J Psychiatry. 1991;158:158164.CrossRefGoogle ScholarPubMed
20.Swayze, VW, Andreasen, NC, Alliger, RJ, Yuh, WT, Ehrhardt, JC. Subcortical and temporal structures in affective disorder and schizophrenia: a magnetic resonance imaging study. Biol Psychiatry. 1992;31:221240.CrossRefGoogle ScholarPubMed
21.Kelsoe, JR Jr, Cadet, JL, Piekar, D, Weinberger, DR. Quantitative neuroanatomy in schizophrenia. Arch Gen Psychiatry. 1988;45:533541.CrossRefGoogle ScholarPubMed
22.Suddath, RL, Casanova, MF, Goldberg, TE, Daniel, DG, Kelsoe, JR Jr, Weinberger, DR. Temporal lobe pathology in schizophrenia: a quantitative magnetic resonance imaging study. Am J Psychiatry. 1989;146:464472.Google ScholarPubMed
23.Barta, PE, Pearlson, GD, Powers, RE, Richards, SS, Tune, LE. Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. Am J Psychiatry. 1990;147:14571462.Google ScholarPubMed
24.Bogerts, B, Ashtari, M, Degreef, G, Alvir, JM, Bilder, RM, Lieberman, JA. Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Res. 1990;35:113.CrossRefGoogle ScholarPubMed
25.Degreef, G, Ashtari, M, Bogerts, B, et al.Volumes of ventricular system subdivisions measured from magnetic resonance images in first-episode schizophrenic patients. Arch Gen Psychiatry. 1992;49:531537.CrossRefGoogle ScholarPubMed
26.DeLisi, LE, Hoff, AL, Schwartz, JE, et al.Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry. 1991;29:159175.CrossRefGoogle ScholarPubMed
27.Suddath, RL, Christison, GW, Torrey, EF, Casanova, MF, Weinberger, DR. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med. 1990;322:789794.CrossRefGoogle ScholarPubMed
28.Reveley, AM, Reveley, MA, Clifford, CA, Murray, RM. Cerebral ventricular size in twins discordant for schizophrenia. Lancet. 1982;1:540541.CrossRefGoogle ScholarPubMed
29.Casanova, MF, Sanders, RD, Goldberg, TE, et al.Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study. J Neurol Neurosurg Psychiatry. 1990;53:416421.CrossRefGoogle ScholarPubMed
30.Jakob, H, Beckmann, H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm. 1986;65:903926.CrossRefGoogle ScholarPubMed
31.Arnold, SE, Hyman, BT, Van Hoesen, GW, Damasio, AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry. 1991;48:625632.CrossRefGoogle ScholarPubMed
32.Benes, FM, McSparran, J, Bird, ED, SanGiovanni, JP, Vincent, SL. Deficit in small interneurons in prefrontal and cingualte cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991;48:9901001.CrossRefGoogle Scholar
33.Akbarian, S, Bunney, WE Jr, Potkin, SG, Wigal, SB, Hagman, JO, Sandman, CA. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry. 1993;50:169177.CrossRefGoogle ScholarPubMed
34.Weiberger, DR. Schizophrenia as a neurodevelopmental disorder. In: Hirsh, SR, Weinberger, DR, eds. Schizophrenia. London, UK: Blackwood; 1995:295323.Google Scholar
35.Rakic, P. Specification of specificai cortical areas. Science. 1988;241:170176.CrossRefGoogle ScholarPubMed
36.Stevens, JR. Neuropathology of schizophrenia. Arch Gen Psychiatry. 1982;39:11311139.CrossRefGoogle ScholarPubMed
37.Lewis, SW, Murray, RM. Obstetric complications, neurodevelopmental deviance, and risk of schizophrenia. J Psychiatr Res. 1987;21:413421.CrossRefGoogle ScholarPubMed
38.Fish, B, Marcus, J, Hans, SL, Auerbach, JG, Perdue, S. Infants at risk for schizophrenia: sequelae of genetic neurointegrative defect. Arch Gen Psychiatry. 1992;49:221235.CrossRefGoogle ScholarPubMed
39.Cannon, TD, Mednick, SA, Parnas, J. Genetic and perinatal determinants of structural brain deficits in schizophrenia. Arch Gen Psychiatry. 1989;46:883889.CrossRefGoogle ScholarPubMed
40.Cannon, TD, Mednick, SA, Parnas, J, Schulsinger, F, Praestholm, J, Vestergaard, A. Developmental brain abnormalities in the offspring of schizophrenic mothers, I: contributions of genetic and perinatal factors. Arch Gen Psychiatry. 1993;50:551564.Google ScholarPubMed
41.Ruiz, I, Altaba, A. Pattern formation in the vertebrate neural plate. Trends Neurosci. 1994;17:233243.CrossRefGoogle Scholar
42.Brunelli, S, Faiella, A, Capra, V, et al.Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet. 1996;12:9496.CrossRefGoogle ScholarPubMed
43.Jacobson, M. Developmental Neuropathology. New York, NY: Plenum Press; 1991.Google Scholar
44.Akbarian, S, Kim, JJ, Potkin, SG, Hetrick, WP, Bunney, WE Jr, Jones, E. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry. 1996;53:425436.CrossRefGoogle ScholarPubMed
45.Cunningham, BA. Cell adhesion molecules as morphoregulators. Curr Opin Cell Biol. 1995;7:628633.CrossRefGoogle ScholarPubMed
46.Gower, HJ, Barton, CH, Elsom, VL, et al.Alternative splicing generates a secreted form of N CAM in muscle and brain. Cell. 1988;55:955964.CrossRefGoogle Scholar
47.Doherty, P, Fruns, M, Seaton, P, et al.A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature. 1990;343:464466.CrossRefGoogle ScholarPubMed
48.Acheson, A, Sunshine, JL, Rutishauser, U. NCAM poly-sialic acid can regulate both cell-cell and cell-substrate interactions. J Cell Biol. 1991;114:143153.CrossRefGoogle Scholar
49.Ono, K, Tomasiewicz, H, Magnuson, T, Rutishauser, U. N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron. 1994;13:595609.CrossRefGoogle ScholarPubMed
50.Barbeau, D, Liang, JJ, Robitalille, Y, Quirion, R, Srivastava, LK. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA. 1995;92:27852789.CrossRefGoogle ScholarPubMed
51.Vicente, AM, Macciardi, F, Verga, M, et al.NCAM and schizophrenia: genetic studies. Mol Psychiatry. 1997;2:6569.CrossRefGoogle ScholarPubMed
52.Kennedy, JL, Pato, MT, Bauer, A, Carvalho, C, Pato, CN. Genetics of schizophrenia: current findings and issues. CNS Spectrums. 1999;4(5):1721.CrossRefGoogle Scholar
53.Cowan, WM, Fawcett, JW, O'Leary, DD, Stanfield, BB. Regressive events in neurogenesis. Science. 1984;225:12581265.CrossRefGoogle ScholarPubMed
54.Levi-Montalcini, R. The nerve growth factor 35 years later. Science. 1987;237:11541162.CrossRefGoogle ScholarPubMed
55.Leibrock, J, Lottspeich, F, Hohn, A, et al.Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989;341:149152.CrossRefGoogle ScholarPubMed
56.Maisonpierre, PC, Le Beau, MM, Espinosa, R III, et al.Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics. 1991;10:558568.CrossRefGoogle ScholarPubMed
57.Ip, NY, Ibanez, CF, Nye, SH, et al.Mammalian neu-rotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA. 1992;89:30603064.CrossRefGoogle ScholarPubMed
58.Glass, DJ, Yancopoulos, GD. The neurotrophins and their receptors. Trends Cell Biol. 1993;3:262268.CrossRefGoogle ScholarPubMed
59.Zhou, J, Bradford, HF, Stern, GM. Influence of BDNF on the expression of the dopaminergic phenotype of tissue used for brain transplants. Brain Res Dev Brain Res. 1997;20:4351.CrossRefGoogle Scholar
60.Falkai, P, Bogerts, B. Limbic pathology in schizophrenia. Biol Psychiatry. 1988;24:515521.CrossRefGoogle ScholarPubMed
61.Selemon, LD, Rajkowska, G, Goldman-Rakic, PS. Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry. 1995;52:805818.CrossRefGoogle ScholarPubMed
62.Brouha, AK, Weickert, CS, Hyde, TM, et al.Reductions in brain derived neurotrophic factor mRNA in the hippocampus of patients with schizophrenia [abstract]. Presented at the 26th Annual Meeting of the Society for Neuroscience; Washington, DC; November 16-21, 1996. Volume 22, part 3:1680. [Abstract #65819].Google Scholar
63.Hanson, IM, Seawright, A, van Heyningen, V. The human BDNF gene maps between FSHB and HVBS1 at the boundary of 11p13-p14. Genomics. 1992;13:13311333.CrossRefGoogle ScholarPubMed
64.Rosier, MF, Goguel, AF, Martin, A, et al.A 1.7-Mb YAC contig around the human BDNF gene (11p13): integration of the physical, genetic, and cytogenetic maps in relation to WAGR syndrome. Genomics. 1994;24:6977.CrossRefGoogle ScholarPubMed
65.Proschei, M, Saunders, A, Roses, AD, Muller, CR. Dinucleotide repeat polymorphism at the human gene for the brain-derived neurotrophic factor (BDNF). Hum Mol Genet. 1992;1:353.CrossRefGoogle Scholar
66.Sasaki, T, Dai, XY, Kuwata, S, et al.Brain-derived neurotrophic factor gene and schizophrenia in Japanese subjects. Am J Med Genet. 1997;74:443444.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
67.Hawi, Z, Straub, RE, O'Neill, A, Kendler, KS, Walsh, D, Gill, M. No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Res. 1998;81:111116.CrossRefGoogle ScholarPubMed
68.Maisonpierre, PC, Belluscio, L, Friedman, B, et al.NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron. 1990;5:501509.CrossRefGoogle ScholarPubMed
69.Nanko, S, Hattori, M, Kuwata, S, et al.Neurotrophin-3 gene polymorphism associated with schizophrenia. Acta Psychiatr Scand. 1994;89:390392.CrossRefGoogle ScholarPubMed
70.Hattori, M, Nanko, S. Association of neurotrophin-3 gene variant with severe form of schizophrenia. Biochem Biophys Res Commun. 1995;209:513518.CrossRefGoogle Scholar
71.Dawson, E, Powell, JF, Sham, PC, et al.An association study of a neurotrophin-3 (NT-3) gene polymorphism with schizophrenia. Acta Psychiatr Scand. 1995;92:425428.CrossRefGoogle ScholarPubMed
72.Nimganocar, VL, Zhang, XR, Brar, JS, DeLeo, M, Ganguli, R. Lack of association of schizophrenia with the neurotrophin-3 gene locus. Acta Psychiatr Scand. 1995;92:464466.CrossRefGoogle Scholar
73.Jonsson, E, Brene, S, Zhang, XR, et al.Schizophrenia and neurotrophin-3 alleles. Acta Psychiatr Scand. 1997;95:414419.CrossRefGoogle ScholarPubMed
74.Thome, J, Durany, N, Palomo, A, et al.Variants in neurotrophic factor genes and schizophrenic psychoses: no associations in a Spanish population. Psychiatry Res. 1997;71:15.Google Scholar
75.Zigmond, RE, Schwarzschild, MA, Rittenhouse, AR. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu Rev Neurosci. 1989;12:415461.Google ScholarPubMed
76.Vitry, FD, Hillion, J, Catelon, J, Thibault, J, Benoliel, JJ, Hamon, M. Dopamine increases the expression of tyrosine hydroxylase and aromatic amino acid decarboxylase in primary cultures of fetal neurons. Brain Res Dev Brain Res. 1991;59:123131.CrossRefGoogle ScholarPubMed
77.Zhou, J, Bradford, HF, Stern, GM. The stimulatory effect of brain-derived neurotrophic factor on dopaminergic phe-notype expression of embryonic rat cortical neurons in vitro. Brain Res Dev Brain Res. 1994;81:318324.CrossRefGoogle Scholar
78.Sollner, T, Rothman, JE. Neurotransmission: harnessing fusion machinery at the synapse. Trends Neurosci. 1994;17:344348.CrossRefGoogle ScholarPubMed
79.Sudhof, TC. The structure of the human synapsin I gene and protein. J Biol Chem. 1990;15;78497852.CrossRefGoogle Scholar
80.Han, HQ, Nichols, RA, Rubin, MR, Bahler, M, Greengard, P. Induction of formation of presynaptic terminals in neuroblastoma cells by synapsin IIb. Nature. 1991;349:697700.CrossRefGoogle ScholarPubMed
81.Catsicas, S, Larhammar, D, Blomqvist, A, Sanna, PP, Milner, RJ, Wilson, MC. Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis. Proc Natl Acad Sci USA. 1991;88:785789.CrossRefGoogle ScholarPubMed
82.Lou, XJ, Bixby, JL. Patterns of presynaptic gene expression define two stages of synaptic differentiation. Mol Cell Neurosci. 1995;6:252262.CrossRefGoogle ScholarPubMed
83.Osen-Sand, A, Catsicas, M, Staple, JK, et al.Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature. 1993;364:445448.CrossRefGoogle ScholarPubMed
84.Thompson, PM, Sower, AC, Perrone-Bizzozero, NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry. 1998;43:239243.CrossRefGoogle ScholarPubMed
85.Karson, CN, Mrak, RE, Schluterman, KO, Sturner, WQ, Sheng, JG, Griffin, WS. Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for “hypofrontality.” Mol Psychiatry. 1999;4:3945.CrossRefGoogle ScholarPubMed
86.Young, CE, Arima, K, Xie, J, et al.SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex. 1998;8:261268.CrossRefGoogle ScholarPubMed
87.Risch, N, Merikangas, K. The future of genetic studies of complex human diseases. Science. 1996;273:15161517.CrossRefGoogle ScholarPubMed