Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T14:13:55.521Z Has data issue: false hasContentIssue false

Perverse, Hodge and motivic realizations of étale motives

Published online by Cambridge University Press:  26 February 2016

Florian Ivorra*
Affiliation:
Institut de Recherche Mathématique de Rennes, UMR 6625 du CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France email florian.ivorra@univ-rennes1.fr

Abstract

Let $k=\mathbb{C}$ be the field of complex numbers. In this article we construct Hodge realization functors defined on the triangulated categories of étale motives with rational coefficients. Our construction extends to every smooth quasi-projective $k$-scheme, the construction done by Nori over a field, and relies on the original version of the basic lemma proved by Beĭlinson. As in the case considered by Nori, the realization functor factors through the bounded derived category of a perverse version of the Abelian category of Nori motives.

Type
Research Article
Copyright
© The Author 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque, vol. 314 (Société Mathématique de France, Paris, 2007).Google Scholar
Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II, Astérisque, vol. 315 (Société Mathématique de France, Paris, 2007).Google Scholar
Ayoub, J., Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math. Jussieu 9 (2010), 225263; MR 2602027 (2011c:14061).Google Scholar
Ayoub, J., La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. 47 (2014), 1141.CrossRefGoogle Scholar
Ayoub, J., Ivorra, F. and Sebag, J., Motives of rigid analytic tubes and nearby motivic sheaves, Submitted for publication, 2013.Google Scholar
Ayoub, J. and Zucker, S., Relative Artin motives and the reductive Borel–Serre compactification of a locally symmetric variety, Invent. Math. 188 (2012), 277427; MR 2909768.Google Scholar
Baily, W. L. Jr. and Borel, A., Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442528; MR 0216035 (35 #6870).Google Scholar
Barwick, C., On left and right model categories and left and right Bousfield localizations, Homology, Homotopy Appl. 12 (2010), 245320; MR 2771591 (2012a:18031).Google Scholar
Beĭlinson, A. A., Notes on absolute Hodge cohomology, in Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemporary Mathematics, vol. 55 (American Mathematical Society, Providence, RI, 1986), 3568; MR 862628 (87m:14019).CrossRefGoogle Scholar
Beĭlinson, A. A., On the derived category of perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Mathematics, vol. 1289 (Springer, Berlin, 1987), 2741; MR 923133 (89b:14027).Google Scholar
Beĭlinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), 5171; MR 751966 (86g:32015).Google Scholar
Borel, A. and Serre, J.-P., Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436491; MR 0387495 (52 #8337).Google Scholar
Choudhury, U. and De Souza, M. G. A., An isomorphism of motivic Galois groups, Preprint (2014), arXiv:1410.6104v1.Google Scholar
Cisinski, D.-C. and Déglise, F., Local and stable homological algebra in Grothendieck abelian categories, Homology, Homotopy Appl. 11 (2009), 219260; MR 2529161 (2010h:18025).CrossRefGoogle Scholar
Cisinski, D.-C. and Déglise, F., Triangulated categories of mixed motives, Preprint (2013),arXiv:0912.2110v3.Google Scholar
Crans, S. E., Quillen closed model structures for sheaves, J. Pure Appl. Algebra 101 (1995), 3557; MR 1346427 (97f:18005).Google Scholar
Deligne, P. and Goncharov, A. B., Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 156; MR 2136480 (2006b:11066).CrossRefGoogle Scholar
Dugger, D., Hollander, S. and Isaksen, D. C., Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004), 951; MR 2034012 (2004k:18007).Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. Inst. Hautes Études Sci. 11 (1961), MR 0163910 (29 #1209).Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), MR 0199181 (33 #7330).Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), MR 0238860 (39 #220).Google Scholar
Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323448; MR 0232821 (38 #1144).Google Scholar
Hirschhorn, P. S., Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99 (American Mathematical Society, Providence, RI, 2003); MR 1944041 (2003j:18018).Google Scholar
Hovey, M., Model categories, Mathematical Surveys and Monographs, vol. 63 (American Mathematical Society, Providence, RI, 1999); MR 1650134 (99h:55031).Google Scholar
Hovey, M., Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001), 63127; MR 1860878 (2002j:55006).Google Scholar
Huber, A., Realization of Voevodsky’s motives, J. Algebraic Geom. 9 (2000), 755799; MR 1775312 (2002d:14029).Google Scholar
Huber, A., ‘Realization of Voevodsky’s motives’, J. Algebraic Geom. 13 (2004), 195207 (Corrigendum J. Algebraic Geom. 9 (2000), 755–799); MR 2008720 (2004h:14030);MR 1775312.Google Scholar
Ivorra, F., Réalisation l-adique des motifs triangulés géométriques. I, Doc. Math. 12 (2007), 607671; MR 2377240 (2008m:19004).CrossRefGoogle Scholar
Ivorra, F., Réalisation -adique des motifs triangulés géométriques. II, Math. Z. 265 (2010), 221247; MR 2606958 (2011b:19006).Google Scholar
Ivorra, F., Mixed Hodge complexes and higher extensions of mixed Hodge modules on algebraic varieties, Rend. Semin. Mat. Univ. Padova 133 (2015), 1177; MR 3354943.CrossRefGoogle Scholar
Ivorra, F., Perverse Nori motives, Math. Res. Lett. (2016), to appear.Google Scholar
Ivorra, F. and Sebag, J., Nearby motives and motivic nearby cycles, Selecta Math. (N.S.) 19 (2013), 879902; MR 3131490.Google Scholar
Jardine, J. F., Motivic symmetric spectra, Doc. Math. 5 (2000), 445553 (electronic);MR 1787949 (2002b:55014).Google Scholar
Jouanolou, J. P., Une suite exacte de Mayer–Vietoris en K-théorie algébrique, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Mathematics, vol. 341 (Springer, Berlin, 1973), 293316; MR 0409476 (53 #13231).Google Scholar
Kashiwara, M. and Schapira, P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292 (Springer, Berlin, 1994), with a chapter in French by Christian Houzel, corrected reprint of the 1990 original; MR 1299726 (95g:58222).Google Scholar
Levine, M., Mixed motives, Mathematical Surveys and Monographs, vol. 57 (American Mathematical Society, Providence, RI, 1998); MR 1623774 (99i:14025).CrossRefGoogle Scholar
Levine, M., Mixed motives, in Handbook of K-theory, vol. 1 (Springer, Berlin, 2005), 429521; MR 2181828 (2007b:14040).Google Scholar
Mazza, C., Voevodsky, V. and Weibel, C., Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2 (American Mathematical Society, Providence, RI, 2006).Google Scholar
Morel, F., A1 -algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052 (Springer, Heidelberg, 2012); MR 2934577.Google Scholar
Morel, F. and Voevodsky, V., A1 -homotopy theory of schemes, Publ. Math. Inst. Hautes Études Sci. 1999 (2001), 45143; MR 1813224 (2002f:14029).Google Scholar
Nori, M. V., Constructible sheaves, in Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), Tata Institute of Fundamental Research Studies in Mathematics, vol. 16 (Tata Institute of Fundamental Research, Bombay, 2002), 471491; MR 1940678 (2003m:14027).Google Scholar
Quillen, D. G., Homotopical algebra, Lecture Notes in Mathematics, vol. 43 (Springer, Berlin, 1967); MR 0223432 (36 #6480).Google Scholar
Quillen, D., Higher algebraic K-theory. I, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Mathematics, vol. 341 (Springer, Berlin, 1973), 85147; MR 0338129 (49 #2895).Google Scholar
Rezk, C., Schwede, S. and Shipley, B., Simplicial structures on model categories and functors, Amer. J. Math. 123 (2001), 551575; MR 1833153 (2002d:55025).Google Scholar
Saito, M., Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), 849995; (1989); MR 1000123 (90k:32038).Google Scholar
Saito, M., Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), 221333; MR 1047415 (91m:14014).Google Scholar
Saito, M., Hodge conjecture and mixed motives. I, in Complex geometry and Lie theory (Sundance, UT, 1989), Proceedings of Symposia in Pure Mathematics, vol. 53 (American Mathematics Society, Providence, RI, 1991), 283303; MR 1141206 (92m:14012).Google Scholar
Artin, M., Grothendieck, A. and Verdier, J. L., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, in Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Mathematics, vol. 269 (Springer, Berlin, 1972), avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat; MR 0354652 (50 #7130).Google Scholar
Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, 1990), 247435; MR 1106918 (92f:19001).Google Scholar
Voevodsky, V., A1 -homotopy theory, in Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Documenta Mathematica Extra Vol. I, (1998), 579604 (electronic); MR 1648048 (99j:14018).Google Scholar
Voevodsky, V., Triangulated categories of motives over a field, in Cycles, transfers, and motivic homology theories, Annals of Mathematical Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 188238; MR 1764202.Google Scholar
Voevodsky, V., Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra 214 (2010), 13841398; MR 2593670 (2011a:55022).Google Scholar
Weibel, C. A., Homotopy algebraic K-theory, in Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), Contemporary Mathematics, vol. 83 (American Mathematical Society, Providence, RI, 1989), 461488; MR 991991 (90d:18006).Google Scholar
Wendt, M., A1 -homotopy of Chevalley groups, J. K-Theory 5 (2010), 245287; MR 2640204 (2011m:14034).Google Scholar
Wildeshaus, J., Motivic intersection complex, in Regulators, Contemporary Mathematics, vol. 571 (American Mathematical Society, Providence, RI, 2012), 255276; MR 2953419.Google Scholar
Zucker, S., L 2 cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982/83), 169218; MR 684171 (86j:32063).Google Scholar
Zucker, S., On the reductive Borel–Serre compactification: L p-cohomology of arithmetic groups (for large p), Amer. J. Math. 123 (2001), 951984; MR 1854116 (2002m:32035).Google Scholar
Zucker, S., On the reductive Borel–Serre compactification. III. Mixed Hodge structures, Asian J. Math. 8 (2004), 881911; MR 2127953 (2006i:14009).Google Scholar