Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T08:14:12.747Z Has data issue: false hasContentIssue false

Gene × Environment effects of serotonin transporter, dopamine receptor D4, and monoamine oxidase A genes with contextual and parenting risk factors on symptoms of oppositional defiant disorder, anxiety, and depression in a community sample of 4-year-old children

Published online by Cambridge University Press:  30 April 2013

John V. Lavigne*
Affiliation:
Northwestern University
Laura B. K. Herzing
Affiliation:
Northwestern University
Edwin H. Cook
Affiliation:
University of Illinois at Chicago
Susan A. Lebailly
Affiliation:
Northwestern University
Karen R. Gouze
Affiliation:
Northwestern University
Joyce Hopkins
Affiliation:
Illinois Institute of Technology
Fred B. Bryant
Affiliation:
Loyola University
*
Address correspondence and reprint requests to: John V. Lavigne, Department of Child and Adolescent Psychiatry, Children's Memorial Hospital (#10), 2300 Children's Plaza, Chicago, IL 60614; E-mail: jlavigne@childrensmemorial.org.

Abstract

Genetic factors can play a key role in the multiple level of analyses approach to understanding the development of child psychopathology. The present study examined gene–environment correlations and Gene × Environment interactions for polymorphisms of three target genes, the serotonin transporter gene, the D4 dopamine receptor gene, and the monoamine oxidase A gene in relation to symptoms of anxiety, depression, and oppositional behavior. Saliva samples were collected from 175 non-Hispanic White, 4-year-old children. Psychosocial risk factors included socioeconomic status, life stress, caretaker depression, parental support, hostility, and scaffolding skills. In comparison with the short forms (s/s, s/l) of the serotonin transporter linked polymorphic repeat, the long form (l/l) was associated with greater increases in symptoms of oppositional defiant disorder in interaction with family stress and with greater increases in symptoms of child depression and anxiety in interaction with caretaker depression, family conflict, and socioeconomic status. In boys, low-activity monoamine oxidase A gene was associated with increases in child anxiety and depression in interaction with caretaker depression, hostility, family conflict, and family stress. The results highlight the important of gene–environment interplay in the development of symptoms of child psychopathology in young children.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidin, R. R. (1995). Manual for the Parenting Stress Index. Odessa, FL: Psychological Assessment Resources.Google Scholar
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
Anguelova, M., Benkelfat, C., & Turecki, G. (2003). A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transport: II. Suicidal behavior. Molecular Psychiatry, 8, 646653.Google Scholar
Arbelle, S., Benjamin, J., Golin, M., Kremer, H., Belmaker, R. H., & Ebstein, R. P. (2003). Relation of shyness in grade school children to the genotype for the long form of the serotonin transporter promoter region polymorphism. American Journal of Psychiatry, 160, 671676.Google Scholar
Auerbach, J. G., Faroy, M., Ebstein, R. P., Kahana, M., & Levine, J. (2001). The association of the dopamine D4 receptor gene (DRD4) and the serotonin transporter promoter gene (5-HTTLPR) with temperament in 12-month-old infants. Journal of Child Psychology and Psychiatry, 42, 777783.CrossRefGoogle ScholarPubMed
Auerbach, J. G., Geller, V., Lezer, S., Shinwell, E., Belmaker, R. H., Levine, J., et al. (1999). Dopamine D4 receptor (D4DR) and serotonin transporter promoter (5-HTTLPR) polymorphisms in the determination of the temperament in 2-month-old infants. Molecular Psychiatry, 4, 369373.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.CrossRefGoogle ScholarPubMed
Barry, R. A., Kochanska, G., & Philibert, R. (2008). G × E interaction in the organization of attachment: Mothers' responsiveness as a moderator of children's genotypes. Journal of Child Psychology and Psychiatry, 49, 13131320.CrossRefGoogle Scholar
Bartels, M., Hudziak, J., van den Oord, J. C. G., van Beijsterveldt, C. E. M., Rietveld, M. J. H., & Boomsma, D. I. (2003 ). Co-occurrence of aggressive behavior and rule-breaking behavior at age 12: Multi-rate analyses. Behavior Genetics, 33, 607621.Google Scholar
Beauchaine, T. P., Webster-Stratton, C. H., & Reid, M. J. (2005). Mediators, moderators, and predictors of 1-year outcomes among children treated for early-onset conduct problems: A latent growth analysis. Journal of Consulting and Clinical Psychology, 73, 371388.Google Scholar
Beck, A. T., & Steer, R. A. (1987). Beck Depression Inventory manual. San Antonio, TX: Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Garbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8, 77100.Google Scholar
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.Google Scholar
Belsky, J., Bakermans-Kranenburg, M., & van IJzendoon, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.Google Scholar
Bor, W., & Sanders, M. R. (2004). Correlates of self-reported coercive parenting of preschool-aged children at high risk for the development of conduct problems. Australian and New Zealand Journal of Psychiatry, 38, 738745.Google Scholar
Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge, MA: Harvard University Press.Google Scholar
Burt, S., Alexandra, S. A., Krueger, R. F., McGue, M., & Iacono, W. G. (2001). Sources of covariation among attention-deficit/hyperactivity disorder, oppositional defiant disorder, and conduct disorder: The important of shared environment. Journal of Abnormal Psychology, 110, 516525.Google Scholar
Campbell, S. B. (1990). Behavior problems in preschool children: Clinical and developmental issues. New York: Guilford Press.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., et al. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a Gene × Environment interaction. Biological Psychiatry, 57, 11171127.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.Google Scholar
Chinta, S. J., & Anderson, J. K. (2005). Dopaminergic neurons. International Journal of Biochemistry and Cell Biology, 37, 942946.Google Scholar
Chipman, P., Jorm, A. F., Prior, M., Sanson, A., Smart, D., Tan, X., et al. (2007). No interaction between the serotonin transporter polymorphism (5-HTTLPR) and childhood adversity or recent stressful life events on symptoms of depression: Results from two community studies. American Journal of Medical Genetics, 144B, 561565.Google ScholarPubMed
Cicchetti, D., & Blender, J. A. (2006). A multiple-levels-of-analysis perspective on resilience: Implications for the developing brain, neural plasticity, and preventive interventions. Annals of the New York Academy of Sciences, 1094, 248258.Google Scholar
Cicchetti, D., & Curtis, W. J. (2007). Multilevel perspectives on pathways to resilient functioning. Development and Psychopathology, 19, 627629.Google Scholar
Cicchetti, D., Rogosch, F. A., & Sturge-Apple, M. L. (2007). Interactions of child maltreatment and serotonin transporter and monoamine oxidase A polymorphisms: Depressive symtomatology among adolescents from low socioeconomic status backgrounds. Development and Psychopathology, 19, 11611180.Google Scholar
Cicchetti, D., & Toth, S. L. (1998). The development of depression in children and adolescents. American Psychologist, 53, 221241.Google Scholar
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385396.Google Scholar
Collier, D. A., Stober, G., Li, T., Heils, A., Catalano, M., DiBella, D., et al. (1996). A novel functional polymorphism within the promoter of the serotonin transporter gene: Possible role in susceptibility to affective disorders. Molecular Psychiatry, 1, 453460.Google Scholar
Costello, E. J., Compton, S. N., Keeler, G., & Angold, A. (2003). Relationships between poverty and psychopathology: A natural experiment. Journal of the American Medical Association, 290, 20232029.CrossRefGoogle ScholarPubMed
Cox, M. J., Mills-Koonce, R., Propper, C., & Gariepy, J. L. (2010). Systems theory and cascades in developmental psychopathology. Development and Psychopathology, 22, 497506.Google Scholar
Cummings, E. M., Keller, P. S., & Davies, P. T. (2005). Towards a family process model of maternal and paternal depressive symptoms: Exploring multiple relations with child and family functioning. Journal of Child Psychology and Psychiatry, 46, 479489.Google Scholar
Deckert, J., Catalano, M., Syagailo, Y. V., Bosi, M., Okladnova, O., Di Bella, D., et al. (1999). Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Human Molecular Genetics, 8, 621624.CrossRefGoogle ScholarPubMed
de Rooij, S. R., Costello, P. M., Veenendaal, M. V., Lillycrop, K. A., Gluckman, P. D., Hanson, M. A., et al. (2011). Associations between DNA methylation of a glucocorticiod receptor promoter and acute stress responses in a large healthy adult population are largely explained by lifestyle and educational differences. Psychoneuroendocrinology. Advance online publication. doi:10.1016/j.psynuen.2011.09.v10Google Scholar
Dick, D. M., Agrawal, A., Schuckit, M. A., Bierut, L., Hinrichs, A., Fox, L., et al. (2006). Marital status, alcohol dependence, and GABRA2: Evidence for gene–environment correlation and interaction. Journal of Studies on Alcohol, 67, 185194.Google Scholar
DiMaio, S., Grizenki, N., & Joober, R. (2003). Dopamine genes and attention-deficit hyperactivity disorder: A review. Journal of Psychiatry and Neuroscience, 28, 2738.Google Scholar
Du, L., Faludi, G., Palkovits, M., Sotonyi, P., Bakish, D., & Hrdina, P. D. (2002). High activity-related allele of MAO-A gene associated with depressed suicide in males. NeurRreport, 13, 11951198.Google Scholar
Eaves, L. J., Silberg, J. L., Meyer, J. M., Maes, H. H., Simonoff, E., Pickles, A., et al. (1997). Genetics and developmental psychopathology: 2. The main effects of genes and environment in the Virginia Twin Study of adolescent behavioral development. Journal of Child Psychology and Psychiatry, 38, 965980.Google Scholar
Eley, T., Sugden, K., Corsico, A., Gregory, A. M., Sham, P., McGuffin, P., et al. (2004). Gene–environment interaction analysis of serotonin system markers with adolescent depression. Molecular Psychiatry, 9, 908915.Google Scholar
Eley, T., Tahir, E., Angleitner, A., Harriss, K., McClay, J., Plomin, R., et al. (2003). Association analysis of MAOA and COMT with neuroticism assessed by peers. American Journal of Medical Genetics, 120B, 9096.Google Scholar
Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59, 7792.CrossRefGoogle ScholarPubMed
Eyberg, S., & Pincus, D. (1999). Eyberg Child Behavior Inventory manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
Faraone, S. V., Doyle, A. E., Mick, E., & Biederman, J. (2001). Meta-analysis of the association between the 7-repeat allele of the dopamine D4 receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry, 158, 10521057.Google Scholar
Fisher, P., & Lucas, C. (2006). Diagnostic Interview Schedule for Children (DISC-IV)–Young Child. New York: Columbia University.Google Scholar
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monamine oxidase A genotyper, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744.Google Scholar
Fox, N. A., Nichols, K. E., Henderson, H. A., Rubin, K., Schmidt, L., Hamer, D., et al. (2005). Evidence for a gene–environment interaction in predicting behavioral inhibition in middle childhood. Psychological Science, 16, 921926.Google Scholar
Frazzetto, G., DiLorenzo, G. D., Carola, V., Proietti, L., Sokolowska, E., Siracusano, A., et al. (2007). Early trauma and increased risk for physical aggression during adulthood: The moderating role of MAOA genotype. PLoS ONE, 2, e486.Google Scholar
Gadow, K. D., & Sprafkin, J. (1997). Early Childhood Inventory 4 norms manual. Stonybrook, NY: Checkmate Plus.Google Scholar
Gadow, K. D., & Sprafkin, J. (2000). Early Childhood Inventory 4 screening manual. Stonybrook, NY: Checkmate Plus.Google Scholar
Gizer, I. R., Ficks, C., & Waldman, I. D. (2009). Candidate gene studies of ADHD: A meta-analytic review. Human Genetics, 126, 5190.Google Scholar
Goodman, S. H., Rouse, M. H., Connell, A. M., Broth, M. R., Hall, C. M., & Heyward, D. (2011). Maternal depression and child psychopathology: A meta-analytic review. Clinical Child and Family Psychology Review, 14, 127.Google Scholar
Grant, K. E., Compas, B. E., Thurm, A. E., McMahon, S. D., & Gipson, P. Y. (2004). Stressors and child and adolescent psychopathology: Measurement issues and prospective effects. Journal of Clinical Child and Adolescent Psychology, 33, 412425.Google Scholar
Grant, K. E., Compas, B. E., Thurm, A. E., McMahon, S. D., Gipson, P. Y., Campbell, A. J., et al. (2006). Stressors and child and adolescent psychopathology: Evidence of moderating and mediating effects. Clinical Psychology Review, 26, 257283.Google Scholar
Gutierrez, B., Arias, B., Gasto, C., Catalan, R., Papiol, S., Pintor, L., et al. (2004). Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders. Psychiatric Genetics, 14, 203208.Google Scholar
Haberstick, B. C., Lessem, J. M., Hopfer, C., Smolen, A., Ehringer, M. A., Timberlake, D., et al. (2005). Monoamine oxidase A (MAOA) and antisocial behaviors in the presence of childhood and adolescent maltreatment. American Journal of Medical Genetics, 135B, 5964.Google Scholar
Hayden, E. P., Doughtery, L. R., Maloney, B., Durbin, E. C., Olino, T. M., Nurnberger, J. I., et al. (2007). Temperamental fearfulness in childhood and the serotonin transporter promoter region polymorphism: A multimethod association study. Psychiatric Genetics, 17, 135142.Google Scholar
Heller, T. L., & Baker, B. L. (2000). Maternal negativity in children's externalizing behavior. Early Education and Development, 11, 483498.Google Scholar
Hipwell, A., Keenan, K., Kasza, R. L., Stouthamer-Loeber, M., & Bean, T. (2008). Reciprocal influences between girls' conduct problems and depression, and parental punishment and warmth: A six-year prospective analysis. Journal of Abnormal Child Psychology, 36, 663677.Google Scholar
Hoffman, C., Crnic, K. A., & Baker, J. K. (2006). Maternal depression and parenting: Implications for children's emergent emotion regulation and behavioral functioning. Parenting: Science and Practice, 6, 271295.Google Scholar
Hollingshead, A. B. (1975). Four-Factor Index of Social Position. Yale University, Department of Sociology.Google Scholar
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 6570.Google Scholar
Holmes, J., Payton, A., Barrett, J., Harrington, R., McGuffin, P., Owen, M., et al. (2002). Association of DRD4 in children with ADHD and comorbid conduct problems. American Journal of Medical Genetics, 114B, 150153.Google Scholar
Hu, X.-Z., Lipsky, R. H., Zhu, G., Akhtar, L. A., Taubman, J., Greenberg, B. D., et al. (2006). Serotonin transporter promoter gain-of-function genotypes are linked to obsessive–compulsive disorder. American Journal of Human Genetics, 78, 815826.Google Scholar
Hudziak, J. J., Derks, E. M., Althoff, R. R., Copeland, W., & Boomsma, D. I. (2005). The genetic and environmental contributions to oppositional defiant behavior: A multi-informant twin study. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 907914.Google Scholar
Huizinga, D., Haberstick, B. C., Smolen, A., Menard, S., Young, S. E., Corley, R. P., et al. (2006). Childhood maltreatment, subsequent antisocial behaivor, and the role of monoamine oxidase A genotype. Biological Psychiatry, 60, 677683.Google Scholar
Jacob, C. P., Muller, J., Schmidt, M., Hohenberger, K., Gutknecht, L., Reif, A., et al. (2005). Cluster B personality disorders are associated with allelic variation of monoamine oxidase A activity. Neuropsychopharmacology, 30, 17111718.CrossRefGoogle ScholarPubMed
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442.Google Scholar
Kang, J. I., Namkoong, K., & Kim, S. J. (2008). The association of 5-HTTLPR and DRD VNTR polymorphisms with affective temperamental traits in healthy volunteers. Journal of Affective Disorders, 109, 157163.Google Scholar
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promotion variant (5-HTTLPR), stress, and depression meta-analysis revisited. Archives of General Psychiatry, 68, 444454.Google Scholar
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., et al. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceeding of the National Academy of Sciences, 101, 1731617321.Google Scholar
Kazdin, A. E. (1997). Parent management training: Evidence, outcomes, and issues. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 13491356.Google Scholar
Kim, S. J., Badner, J., Cheon, K. A., Kim, B. N., Yoo, H. J., Kim, S. J., et al. (2005). Family-based association study of the serotonin transporter gene polymorphisms in Korean ADHD trios. American Journal of Medical Genetics, 139B, 1418.Google Scholar
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene–environment interaction predicting chidren's mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913.Google Scholar
Kim-Cohen, J., Moffitt, T. E., Taylor, A., Pawlby, S. J., & Caspi, A. (2005). Maternal depression and children's antisocial behavior. Archives of General Psychiatry, 62, 173181.Google Scholar
Kinnally, E. L., Huang, Y., Haverly, R., Burke, A. K., Galfalvy, H., Brent, D. P., et al. (2009). Parental care moderates the influence of MAOA-uVNTR genotype and childhood stressors on trait impulsivity and aggression in young women. Psychiatric Genetics, 19, 126133.Google Scholar
Kirley, A., Lowe, N., Mullins, C., McCarron, M., Daly, G., Waldman, I., et al. (2004). Phenotype studies of the DRD4 gene polymorphisms in ADHD: Association with oppositional defiant disorder and positive family history. American Journal of Medical Genetics, 131B, 3842.Google Scholar
Kochanska, G., Philbert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother–child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338.Google Scholar
Kramer, D. A. (2009). G × E depression hypothesis challenged: Researchers reply. AACAP News, November/December, 283284.Google Scholar
Kunugi, H., Hattori, M., Kato, T., Tatsumi, M., Sakai, T., Sasaki, T., et al. (1997). Serotonin transporter gene polymorphisms: Ethnic difference and possible association with bipolar affective disorder. Molecular Psychiatry, 2, 457462.Google Scholar
Lakatos, K., Nemoda, Z., Birkas, E., Ronai, Z., Kovacs, E., Ney, K., et al. (2003). Association of D4 dopamine receptor gene and serotonin transporter promoter polymorphisms with infants' response to novelty. Molecular Psychiatry, 8, 9097.Google Scholar
Lau, J. Y. F., & Eley, T. (2008). Distentangling gene–environment correlations and interactions on adolescent depressive symptoms. Journal of Child Psychology and Psychiatry, 49, 142150.Google Scholar
Lengua, L. J. (2006). Growth in temperament and parenting as predictors of adjustment during children's transition to adolescence. Developmental Psychology, 42, 819832.Google Scholar
Leon, S. L., Croes, E. A., Sayed-Tabatabaei, F. A., Claes, S., Van Broeckhoven, C., & van Dujin, C. M. (2005). The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorder: A meta-analysis. Biological Psychiatry, 57, 9991003.Google Scholar
Lessenberry, B., & Rehfeldt, R. (2004). Evaluating stress levels of parents of children with disabilities. Exceptional Children, 70, 231244.Google Scholar
Lovejoy, C. M., Weis, R., O'Hare, E., & Rubin, E. C. (1999). Development and initial validation of the Parent Behavior Inventory. Psychological Assessment, 4, 112.Google Scholar
Masten, A. S. (2006). Developmental psychopathology: Pathways to the future. International Journal of Behavioral Development, 30, 4754.Google Scholar
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22, 491495.Google Scholar
McCubbin, H. I., Thompson, A. I., & McCubbin, M. A. (1996). Family assessment: Resiliency, coping and adaptation—Inventories for research and practice. Madison, WI: University of Wisconsin Press.Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 62, 473481.Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology. Perspectives on Psychological Science, 1, 527.Google Scholar
Monroe, S. M., Slavich, G. M., & Georgiades, K. (2009). The social environment and life stress in depression. In Gotlib, I. H. & Hammen, C. L. (Eds.), Handbook of depression (2nd ed., pp. 340360). New York: Guilford Press.Google Scholar
Moos, R. H., & Moos, B. S. (1981). Family Environment Scale manual. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Munafo, M. R., Clark, T., & Flint, J. (2004). Does measurement instrument moderate the association between the serotonin transporter gene and anxiety-related personality traits? A meta-analysis. Molecular Psychiatry. Advance online publication. doi:10.1038/sj.mp.4001627Google Scholar
Munafo, M. R., Clark, T. G., Moore, L. R., Payne, E., Walton, R. T., & Flint, J. (2003). Genetic polymorphisms and personality: A systematic review and meta-analysis. Molecular Psychiatry, 8, 471484.Google Scholar
Munafo, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene × environment interactions at the serotonin transporter locus. Biological Psychiatry, 65, 211219.Google Scholar
NICHD Early Childhood Research Network. (1999). Child care and mother–child interaction in the first three years of life. Developmental Psychology, 35, 13991413.Google Scholar
Nilsson, K. W., Sjoberg, R. L., Damberg, M., Leppert, J., Ohrvik, J., Alm, P. O., et al. (2006). Role of monoamine oxidase A genotyper and psychosocial factors in male adolescent criminal activity. Biological Psychiatry, 59, 121127.Google Scholar
Nobile, M., Giordo, R., Marino, C., Carlet, O., Pastore, V., Vanzin, L., et al. (2007). Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Development and Psychopathology, 19, 11471160.Google Scholar
Persson, M. L., Geijer, T., Wasserman, D., Rockah, R., Frisch, A., Michaelovsky, E., et al. (1999). Lack of association between suicide attempt and a polymorphism at the dopamine receptor D4 locus. Psychiatric Genetics, 9, 97100.Google Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype–environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84, 309322.Google Scholar
Prom-Wormley, E. C., Eaves, L. J., Foley, D. L., Gardner, C. O., Archer, K. J., Wormley, B. K., et al. (2009). Monoamine oxidase A and childhood adversity as risk factors for conduct disorder in females. Psychological Medicine, 38, 579590.Google Scholar
Propper, C., Willoughby, M., Halpern, C. T., Carbone, M. A., & Cox, M. (2007). Parenting quality, DRD4, and the prediction of externalizing and internalizing behaviors in early childhood. Developmental Psychobiology, 49, 619632.Google Scholar
Radloff, L. A. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.Google Scholar
Reif, A., Rosler, M., Freitag, C. M., Schneider, M., Eujen, A., Kissling, C., et al. (2007). Nature and nurture predispose to violent behavior: Serotonergic genes and adverse childhood environment. Neuropsychopharmacology, 32, 23752383.Google Scholar
Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L. J., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression. Journal of the American Medical Association, 301, 24622471.Google Scholar
Rosenberg, S., Templeton, A. R., Feigin, P. D., Lancet, D., Beckmann, J. S., Selig, S., et al. (2006). The association of DNA sequence variation at the MAOA genetic locus with quantitative behavioural traits in normal males. Human Genetics, 120, 447459.Google Scholar
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47, 226261.Google Scholar
Schinka, J. A., Busch, R. M., & Robichaux-Keene, N. (2004). A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Molecular Psychiatry, 9, 197202.Google Scholar
Schinka, J. A., Letsch, E. A., & Crawford, F. C. (2002). DRD4 and novelty seeking: Results of a meta-analysis. American Journal of Medical Genetics, 114B, 643648.Google Scholar
Schmidt, L. A., Fox, N. A., & Hamer, D. H. (2007). Evidence for a gene–gene interaction in predicting children's behavior problems: Association of serotonin transporter short and dopamine receptor D4 long genotypes with internalizing and externalizing behaviors in typically developing 7-year-olds. Development and Psychopathology, 19, 11051116.Google Scholar
Schroeder, M., Krebs, M. O., Bleich, S., & Frieling, H. (2010). Epigenetics and depression: Current challenges and new therapeutic options. Current Opinion in Psychiatry, 23, 588592.Google Scholar
Sen, S., Burmeister, M., & Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. American Journal of Medical Genetics, 127B, 8589.Google Scholar
Shanahan, L., Copeland, W., Costello, E. J., & Angold, A. (2008). Specificity of putative psychosocial risk factors for psychiatric disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 49, 3442.Google Scholar
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046.Google Scholar
Sjoberg, R. L., Nilsson, K. W., Wargelius, H. L., Leppert, J., Lindstrom, L., & Oreland, L. (2007). Adolescent girls and criminal activity: Role of MAOA-LPR genotype and psychosocial factors. American Journal of Medical Genetics, 144B, 159164.Google Scholar
Smeekens, S., Riksen-Walraven, J. M., & van Bakel, H. J. A. (2007). Multiple determinants of externalizing behavior in 5-year-olds: A longitudinal model. Journal of Abnormal Child Psychology, 35, 347361.Google Scholar
Sweeney, M., & Pine, D. (2004). Etiology of fear and anxiety. In Ollendick, T. H. & March, J. S. (Eds.), Phobic and anxiety disorders in children and adolescents (pp. 3460). Oxford: Oxford University Press.Google Scholar
Syaglio, Y. V., Stober, G., Grassle, M., Reimer, E., Knapp, M., Jungkunz, G., et al. (2001). Association analysis of the functional monoamine oxidase A gene promoter polymorphism in psychiatric disorders. American Journal of Medical Genetics, 105B, 168171.Google Scholar
Tadic, A., Rujescu, D., Szegedi, A., Giegling, I., Singer, P., Moller, H. J., et al. (2003). Association of a MAOA gene variant with generalized anxiety disorder, but not with panic disorder or major depression. American Journal of Medical Genetics, 117B, 16.Google Scholar
Taylor, A., & Kim-Cohen, J. (2007). Meta-analysis of gene–environment interactions in developmental psychopathology. Development and Psychopathology, 19, 10291037.Google Scholar
Tochigi, M., Hibino, H., Otowa, T., Kato, C., Marui, T., Ohtani, T., et al. (2006). Association between dopamine D4 receptor (DRD4) exon III polymorphism and neuroticism in the Japanese population. Neuroscience Letters, 398, 333336.Google Scholar
Tomarken, A. J., & Waller, N. G. (2003). Potential problems with “well fitting” models. Journal of Abnormal Psychology, 112, 578598.Google Scholar
Tsuang, M. T., Taylor, L., & Faraone, S. V. (2004). An overview of the genetics of psychotic mood disorders. Journal of Psychiatric Research, 38, 315.Google Scholar
Twitchell, G. R., Hanna, G. L., Cook, E. H., Stoltenberg, S. F., Fitzgerald, H. E., & Zucker, R. A. (2001). Serotonin transporter promoter polymorphism genotype is associated with behavioral disinhibition and negative affect in children of alcoholics. Alcoholism, Clinical and Experimental Research, 25, 953959.Google Scholar
Uher, R., & McGuffin, P. (2008). The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: Review and methodological analysis. Molecular Psychiatry, 13, 131146.Google Scholar
Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 1822.Google Scholar
van IJzendoorn, M. H., Caspers, K., Bakermans-Kranenberg, M. J., Beach, S. R. H., & Philibert, R. (2010). Methylation matters: Interaction between methylation density and serotonin transporter genotype predicts unresolved loss or trauma. Biological Psychiatry, 68, 405407.Google Scholar
Wakschlag, L., Kistner, E. O., Pine, D. S., Biesecker, G., Pickerr, K. E., Skol, A. D., et al. (2009). Interaction of prenatal exposure to cigarettes and MAOA genotype in pathways to youth antisocial behavior. Molecular Psychiatry. Advance online publication. doi:10.1038/mp.2009.22Google Scholar
Webster-Stratton, C. S., Reid, M. J., & Hammond, M. (2004). Treating children with early-onset conduct problems: Intervention outcomes for parent, child, and teacher training. Journal of Clinical Child and Adolescent Psychology, 33, 105124.Google Scholar
Widom, C. S., & Brzustowicz, L. M. (2006). MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and the risk for violent and antisocial behavior. Biological Psychiatry, 60, 684689.Google Scholar
Wiggins, J. L., Bedoyan, J. K., Peltier, S. J., Ashinoff, S., Carrasco, M., Weng, S. J., et al. (2011). The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: A preliminary report. NeuroImage. Advance online publication. doi:10.1016/j.neuroimage.2011.10.030Google Scholar
Zalsman, G., Frisch, A., Lewis, R., Michaelovsky, E., Hermesh, H., Sher, L., et al. (2004). DRD4 receptor gene exon III polymorphism in inpatient suicidal adolescents. Journal of Neural Transmission, 111, 15931603.Google Scholar
Zimet, D. M., & Jacob, T. (2001). Influences of marital conflict on child adjustment: Review of theory and research. Clinical Child and Family Psychology Review, 4, 319335.Google Scholar