Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T20:02:02.880Z Has data issue: false hasContentIssue false

Prenatal stress and the development of psychopathology: Lifestyle behaviors as a fundamental part of the puzzle

Published online by Cambridge University Press:  02 August 2018

Carolina De Weerth*
Affiliation:
Radboud University
*
Address correspondence and reprint requests to: Carolina de Weerth, Developmental Psychology, Behavioural Science Institute, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands; E-mail: C.deWeerth@psych.ru.nl.

Abstract

Maternal psychological stress, depression, and anxiety during pregnancy (prenatal stress; PNS) are thought to impact fetal development with long-term effects on offspring outcome. These effects would include physical and mental health, including psychopathology. Maternal sleep, diet, and exercise during pregnancy are lifestyle behaviors that are understudied and often solely included in PNS studies as confounders. However, there are indications that these lifestyle behaviors may actually constitute essential mediators between PNS and fetal programming processes. The goal of this theoretical review was to investigate this idea by looking at the evidence for associations between PNS and sleep, diet, and exercise, and by piecing together the information on potential underlying mechanisms and causal pathways through which these factors may affect the offspring. The analysis of the literature led to the conclusion that sleep, diet, and exercise during pregnancy, may have fundamental roles as mediators between PNS and maternal pregnancy physiology. By integrating these lifestyle behaviors into models of prenatal programming of development, a qualitatively higher and more comprehensive understanding of the prenatal origins of psychopathology can be obtained. The review finalizes by discussing some of the present challenges facing the field of PNS and offspring programming, and offering solutions for future research.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by a Jacobs Foundation Advanced Research Fellowship and a Creswick Foundation visiting fellow grant to the Murdoch Children's Research Institute.

References

Abeysena, C., Jayawardana, P., & de A Seneviratne, R. (2009). Maternal sleep deprivation is a risk factor for small for gestational age: A cohort study. Australian and New Zealand Journal of Obstetrics & Gynaecology, 49, 382387. doi:10.1111/j.1479-828X.2009.01010.xGoogle Scholar
Alderdice, F., Lynn, F., & Lobel, M. (2012). A review and psychometric evaluation of pregnancy-specific stress measures. Journal of Psychosomatic Obstetrics and Gynaecology, 33, 6277. doi:10.3109/0167482X.2012.673040Google Scholar
Alfaradhi, M. Z., & Ozanne, S. E. (2011). Developmental programming in response to maternal overnutrition. Frontiers in Genetics, 2, 27. doi:10.3389/fgene.2011.00027Google Scholar
Alkon, A., Boyce, W. T., Tran, L., Harley, K. G., Neuhaus, J., & Eskenazi, B. (2014). Prenatal adversities and Latino children's autonomic nervous system reactivity trajectories from 6 months to 5 years of age. PLOS ONE, 9, e86283. doi:10.1371/journal.pone.0086283Google Scholar
Amorim Adegboye, A. R., & Linne, Y. M. (2013). Diet or exercise, or both, for weight reduction in women after childbirth. Cochrane Database of Systematic Reviews, 7, CD005627. doi:10.1002/14651858.CD005627.pub3Google Scholar
Andersson, N. W., Hansen, M. V., Larsen, A. D., Hougaard, K. S., Kolstad, H. A., & Schlünssen, V. (2016). Prenatal maternal stress and atopic diseases in the child: A systematic review of observational human studies. Allergy, 71, 1526. doi:10.1111/all.12762Google Scholar
Appleton, A. A., Armstrong, D. A., Lesseur, C., Lee, J., Padbury, J. F., Lester, B. M., & Marsit, C. J. (2013). Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLOS ONE, 8, e74691. doi:10.1371/journal.pone.0074691Google Scholar
Artal, R., & O'Toole, M. (2003). Guidelines of the American College of Obstetricians and Gynecologists for exercise during pregnancy and the postpartum period. British Journal of Sports Medicine, 37, 612.Google Scholar
Auerbach, M. V., Lobel, M., & Cannella, D. T. (2014). Psychosocial correlates of health-promoting and health-impairing behaviors in pregnancy. Journal of Psychosomatic Obstetrics & Gynecology, 35, 7683. doi:10.3109/0167482X.2014.943179Google Scholar
Avitsur, R., Levy, S., Goren, N., & Grinshpahet, R. (2015). Early adversity, immunity and infectious disease. Stress (Amsterdam), 18, 289296. doi:10.3109/10253890.2015.1017464Google Scholar
Babbar, S., & Shyken, J. (2016). Yoga in pregnancy. Clinical Obstetrics and Gynecology, 59, 600612. doi:10.1097/GRF.0000000000000210Google Scholar
Babson, K. A., & Feldner, M. T. (2010). Temporal relations between sleep problems and both traumatic event exposure and PTSD: A critical review of the empirical literature. Journal of Anxiety Disorders, 24, 115. doi:10.1016/j.janxdis.2009.08.002Google Scholar
Bale, T. L. (2014). Lifetime stress experience: Transgenerational epigenetics and germ cell programming. Dialogues in Clinical Neuroscience, 16, 297305.Google Scholar
Baptiste-Roberts, K., Ghosh, P., & Nicholson, W. K. (2011). Pregravid physical activity, dietary intake, and glucose intolerance during pregnancy. Journal of Women's Health, 20, 18471851. doi:10.1089/jwh.2010.2377Google Scholar
Barker, E. D., Kirkham, N., Ng, J., & Jensen, S. K. G. (2013). Prenatal maternal depression symptoms and nutrition, and child cognitive function. British Journal of Psychiatry, 203, 417421. doi:10.1192/bjp.bp.113.129486Google Scholar
Baskin, R., Hill, B., Jacka, F. N., O'Neil, A., & Skouteris, H. (2015). The association between diet quality and mental health during the perinatal period: A systematic review. Appetite, 91, 4147. doi:10.1016/j.appet.2015.03.017Google Scholar
Beddoe, A. E., Lee, K. A., Weiss, S. J., Kennedy, H. P., & Yang, C.-P. P. (2010). Effects of mindful yoga on sleep in pregnant women: A pilot study. Biological Research for Nursing, 11, 363370. doi:10.1177/1099800409356320Google Scholar
Beijers, R., Buitelaar, J. K., & de Weerth, C. (2014). Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: Beyond the HPA axis. European Child and Adolescent Psychiatry, 23, 943956. doi:10.1007/s00787-014-0566-3Google Scholar
Belsky, J., & Shalev, I. (2016). Contextual adversity, telomere erosion, pubertal development, and health: Two models of accelerated aging, or one? Development and Psychopathology, 28(4, Pt. 2), 13671383. doi:10.1017/S0954579416000900Google Scholar
Bershadsky, S., Trumpfheller, L., Kimble, H. B., Pipaloff, D., & Yim, I. S. (2014). The effect of prenatal Hatha yoga on affect, cortisol and depressive symptoms. Complementary Therapies in Clinical Practice, 20, 106113. doi:10.1016/j.ctcp.2014.01.002Google Scholar
, K., Artal, R., Barakat, R., Brown, W., Davies, G. A. L., Dooley, M., … Khan, K. M. (2016). Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne: Part 1. Exercise in women planning pregnancy and those who are pregnant. British Journal of Sports Medicine, 50, 571589. doi:10.1136/bjsports-2016-096218Google Scholar
Bolton, J. L., & Bilbo, S. D. (2014). Developmental programming of brain and behavior by perinatal diet: Focus on inflammatory mechanisms. Dialogues in Clinical Neuroscience, 16, 307320.Google Scholar
Bonnin, A., & Levitt, P. (2011). Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience, 197, 17. doi:10.1016/j.neuroscience.2011.10.005Google Scholar
Borders, A. E. B., Wolfe, K., Qadir, S., Kim, K.-Y., Holl, J., & Grobman, W. (2015). Racial/ethnic differences in self-reported and biologic measures of chronic stress in pregnancy. Journal of Perinatology, 35, 580584. doi:10.1038/jp.2015.18Google Scholar
Borodulin, K., Evenson, K. R., Monda, K., Wen, F., Herring, A. H., & Dole, N. (2010). Physical activity and sleep among pregnant women. Paediatric and Perinatal Epidemiology, 24, 4552. doi:10.1111/j.1365-3016.2009.01081.xGoogle Scholar
Bronson, S. L., & Bale, T. L. (2014). Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology, 155, 26352646. doi:10.1210/en.2014-1040Google Scholar
Butte, N. F., & King, J. C. (2005). Energy requirements during pregnancy and lactation. Public Health Nutrition, 8, 10101027.Google Scholar
Cain, M. A., & Louis, J. M. (2016). Sleep disordered breathing and adverse pregnancy outcomes. Clinics in Laboratory Medicine, 36, 435446. doi:10.1016/j.cll.2016.01.001Google Scholar
Carnelio, S., Morton, A., & McIntyre, H. D. (2017). Sleep disordered breathing in pregnancy: The maternal and fetal implications. Journal of Obstetrics and Gynaecology, 37, 170178. doi:10.1080/01443615.2016.1229273Google Scholar
Carpenter, T., Grecian, S. M., & Reynolds, R. M. (2017). Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans suggest increased vulnerability in females: A systematic review. Journal of Developmental Origins of Health and Disease, 8, 244255. doi:10.1017/S204017441600074XGoogle Scholar
Chang, M.-W., Brown, R., Nitzke, S., Smith, B., & Eghtedary, K. (2015). Stress, sleep, depression and dietary intakes among low-income overweight and obese pregnant women. Maternal and Child Health Journal, 19, 10471059. doi:10.1007/s10995-014-1604-yGoogle Scholar
Chatzi, L., Melaki, V., Sarri, K., Apostolaki, I., Roumeliotaki, T., Georgiou, V., … Kogevinas, M. (2011). Dietary patterns during pregnancy and the risk of postpartum depression: The mother-child “Rhea” cohort in Crete, Greece. Public Health Nutrition, 14, 16631670. doi:10.1017/S1368980010003629Google Scholar
Chen, C., Nakagawa, S., An, Y., Ito, K., Kitaichi, Y., & Kusumi, I. (2017). The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Frontiers in Neuroendocrinology, 44, 83102. doi:10.1016/j.yfrne.2016.12.001Google Scholar
Christian, L. M., Glaser, R., Porter, K., & Iams, J. D. (2013). Stress-induced inflammatory responses in women: Effects of race and pregnancy. Psychosomatic Medicine, 75, 658669. doi:10.1097/PSY.0b013e31829bbc89Google Scholar
Clapp, J. F. (1996). Morphometric and neurodevelopmental outcome at age five years of the offspring of women who continued to exercise regularly throughout pregnancy. Journal of Pediatrics, 129, 856863.Google Scholar
Clapp, J. F., Lopez, B., & Harcar-Sevcik, R. (1999). Neonatal behavioral profile of the offspring of women who continued to exercise regularly throughout pregnancy. American Journal of Obstetrics and Gynecology, 180(1, Pt. 1), 9194.Google Scholar
Coussons-Read, M. E., Okun, M. L., & Nettles, C. D. (2007). Psychosocial stress increases inflammatory markers and alters cytokine production across pregnancy. Brain, Behavior, and Immunity, 21, 343350. doi:10.1016/j.bbi.2006.08.006Google Scholar
Crowley, S. K., O'Buckley, T. K., Schiller, C. E., Stuebe, A., Morrow, A. L., & Girdler, S. S. (2016). Blunted neuroactive steroid and HPA axis responses to stress are associated with reduced sleep quality and negative affect in pregnancy: A pilot study. Psychopharmacology, 233, 12991310. doi:10.1007/s00213-016-4217-xGoogle Scholar
Da Costa, D., Rippen, N., Dritsa, M., & Ring, A. (2003). Self-reported leisure-time physical activity during pregnancy and relationship to psychological well-being. Journal of Psychosomatic Obstetrics and Gynaecology, 24, 111119.Google Scholar
Davis, K., Goodman, S. H., Leiferman, J., Taylor, M., & Dimidjian, S. (2015). A randomized controlled trial of yoga for pregnant women with symptoms of depression and anxiety. Complementary Therapies in Clinical Practice, 21, 166172. doi:10.1016/j.ctcp.2015.06.005Google Scholar
de Weerth, C. (2017). Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neuroscience and Biobehavioral Reviews, 83, 458471. doi:10.1016/j.neubiorev.2017.09.016Google Scholar
de Weerth, C., & Buitelaar, J. K. (2005). Physiological stress reactivity in human pregnancy? A review. Neuroscience and Biobehavioral Reviews, 29, 295312. doi:10.1016/j.neubiorev.2004.10.005Google Scholar
Emmett, P. M., Jones, L. R., & Golding, J. (2015). Pregnancy diet and associated outcomes in the Avon Longitudinal Study of Parents and Children. Nutrition Reviews, 73(Suppl. 3), 154174. doi:10.1093/nutrit/nuv053Google Scholar
Entringer, S., & Wadhwa, P. D. (2013). Developmental programming of obesity and metabolic dysfunction: Role of prenatal stress and stress biology, 74, 107120. doi:10.1159/000348454Google Scholar
Fall, C. H. D. (2011). Evidence for the intra-uterine programming of adiposity in later life. Annals of Human Biology, 38, 410428. doi:10.3109/03014460.2011.592513Google Scholar
Field, T., Diego, M., Delgado, J., & Medina, L. (2013a). Tai chi/yoga reduces prenatal depression, anxiety and sleep disturbances. Complementary Therapies in Clinical Practice, 19, 610. doi:10.1016/j.ctcp.2012.10.001Google Scholar
Field, T., Diego, M., Delgado, J., & Medina, L. (2013b). Yoga and social support reduce prenatal depression, anxiety and cortisol. Journal of Bodywork and Movement Therapies, 17, 397403. doi:10.1016/j.jbmt.2013.03.010Google Scholar
Field, T., Diego, M., Hernandez-Reif, M., Figueiredo, B., Deeds, O., Ascencio, A., … Kuhn, C. (2010). Comorbid depression and anxiety effects on pregnancy and neonatal outcome. Infant Behavior and Development, 33, 2329. doi:10.1016/j.infbeh.2009.10.004Google Scholar
Field, T., Diego, M., Hernandez-Reif, M., Medina, L., Delgado, J., & Hernandez, A. (2012). Yoga and massage therapy reduce prenatal depression and prematurity. Journal of Bodywork and Movement Therapies, 16, 204209. doi:10.1016/j.jbmt.2011.08.002Google Scholar
Forray, A., & Foster, D. (2015). Substance use in the perinatal period. Current Psychiatry Reports, 17, 91. doi:10.1007/s11920-015-0626-5Google Scholar
Fowles, E. R., & Fowles, S. L. (2008). Healthy eating during pregnancy: Determinants and supportive strategies. Journal of Community Health Nursing, 25, 138152. doi:10.1080/07370010802221727Google Scholar
Fowles, E. R., Stang, J., Bryant, M., & Kim, S. (2012). Stress, depression, social support, and eating habits reduce diet quality in the first trimester in low-income women: A pilot study. Journal of the Academy of Nutrition and Dietetics, 112, 16191625. doi:10.1016/j.jand.2012.07.002Google Scholar
Fowles, E. R., Timmerman, G. M., Bryant, M., & Kim, S. (2011). Eating at fast-food restaurants and dietary quality in low-income pregnant women. Western Journal of Nursing Research, 33, 630651. doi:10.1177/0193945910389083Google Scholar
Freeman, D., Sheaves, B., Goodwin, G. M., Yu, L.-M., Nickless, A., Harrison, P. J., … Espie, C. A. (2017). The effects of improving sleep on mental health (OASIS): A randomised controlled trial with mediation analysis. Lancet Psychiatry. Advance online publication. doi:10.1016/S2215-0366(17)30328-0Google Scholar
Gaston, A., & Prapavessis, H. (2013). Tired, moody and pregnant? Exercise may be the answer. Psychology & Health, 28, 13531369. doi:10.1080/08870446.2013.809084Google Scholar
Genest, D. S., Falcao, S., Gutkowska, J., & Lavoie, J. L. (2012). Impact of exercise training on preeclampsia: Potential preventive mechanisms. Hypertension, 60, 11041109. doi:10.1161/HYPERTENSIONAHA.112.194050Google Scholar
Georgieff, M. K., Brunette, K. E., & Tran, P. V. (2015). Early life nutrition and neural plasticity. Development and Psychopathology, 27, 411423. doi:10.1017/S0954579415000061Google Scholar
Giesbrecht, G. F., Campbell, T., Letourneau, N., & APrON Study Team. (2015). Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development. Psychoneuroendocrinology, 56, 168178. doi:10.1016/j.psyneuen.2015.03.013Google Scholar
Gitau, R., Fisk, N. M., & Glover, V. (2001). Maternal stress in pregnancy and its effect on the human foetus: An overview of research findings. Stress (Amsterdam), 4, 195203.Google Scholar
Goldstein, A. N., & Walker, M. P. (2014). The role of sleep in emotional brain function. Annual Review of Clinical Psychology, 10, 679708. doi:10.1146/annurev-clinpsy-032813-153716Google Scholar
Goodwin, A., Astbury, J., & McMeeken, J. (2000). Body image and psychological well-being in pregnancy. A comparison of exercisers and non-exercisers. Australian and New Zealand Journal of Obstetrics and Gynaecology, 40, 442447.Google Scholar
Guszkowska, M. (2014). The effect of exercise and childbirth classes on fear of childbirth and locus of labor pain control. Anxiety, Stress, and Coping, 27, 176189. doi:10.1080/10615806.2013.830107Google Scholar
Haakstad, L. A. H., & , K. (2011). Exercise in pregnant women and birth weight: A randomized controlled trial. BMC Pregnancy and Childbirth, 11, 66. doi:10.1186/1471-2393-11-66Google Scholar
Haakstad, L. A. H., Torset, B., & , K. (2016). What is the effect of regular group exercise on maternal psychological outcomes and common pregnancy complaints? An assessor blinded RCT. Midwifery, 32, 8186. doi:10.1016/j.midw.2015.10.008Google Scholar
Hamazaki, K., Harauma, A., Otaka, Y., Moriguchi, T., & Inadera, H. (2016). Serum n-3 polyunsaturated fatty acids and psychological distress in early pregnancy: Adjunct Study of Japan Environment and Children's Study. Translational Psychiatry, 6, e737. doi:10.1038/tp.2016.2Google Scholar
Hartley, E., McPhie, S., Fuller-Tyszkiewicz, M., Hill, B., & Skouteris, H. (2016). Psychosocial factors and excessive gestational weight gain: The effect of parity in an Australian cohort. Midwifery, 32, 3037. doi:10.1016/j.midw.2015.09.009Google Scholar
Harvey, C.-J., Gehrman, P., & Espie, C. A. (2014). Who is predisposed to insomnia: A review of familial aggregation, stress-reactivity, personality and coping style. Sleep Medicine Reviews, 18, 237247. doi:10.1016/j.smrv.2013.11.004Google Scholar
Harville, E. W., Savitz, D. A., Dole, N., Herring, A. H., & Thorp, J. M. (2009). Stress questionnaires and stress biomarkers during pregnancy. Journal of Women's Health, 18, 14251433.Google Scholar
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., … Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105, 1704617049. doi:10.1073/pnas.0806560105Google Scholar
Holzman, C., Senagore, P., Tian, Y., Bullen, B., Devos, E., Leece, C., … Sapkal, A. (2009). Maternal catecholamine levels in midpregnancy and risk of preterm delivery. American Journal of Epidemiology, 170, 10141024. doi:10.1093/aje/kwp218Google Scholar
Howerton, C. L., & Bale, T. L. (2012). Prenatal programing: At the intersection of maternal stress and immune activation. Hormones and Behavior, 62, 237242. doi:10.1016/j.yhbeh.2012.03.007Google Scholar
Huddy, R. L., Torres, S. J., Milte, C. M., McNaughton, S. A., Teychenne, M., & Campbell, K. J. (2016). Higher adherence to the Australian dietary guidelines is associated with better mental health status among Australian adult first-time mothers. Journal of the Academy of Nutrition and Dietetics, 116, 14061412. doi:10.1016/j.jand.2016.01.010Google Scholar
Huizink, A. C. (2012). Prenatal substance use, prenatal stress and offspring behavioural outcomes: Considerations for future studies. Nordic Journal of Psychiatry, 66, 115122. doi:10.3109/08039488.2011.641586Google Scholar
Hung, H.-M., Tsai, P.-S., Ko, S.-H., & Chen, C.-H. (2013). Patterns and predictors of sleep quality in Taiwanese pregnant women. American Journal of Maternal Child Nursing, 38, 95101. doi:10.1097/NMC.0b013e3182659345Google Scholar
Hurley, K. M., Caulfield, L. E., Sacco, L. M., Costigan, K. A., & Dipietro, J. A. (2005). Psychosocial influences in dietary patterns during pregnancy. Journal of the American Dietetic Association, 105, 963966. doi:10.1016/j.jada.2005.03.007Google Scholar
Irwin, M., Clark, C., Kennedy, B., Christian Gillin, J., & Ziegler, M. (2003). Nocturnal catecholamines and immune function in insomniacs, depressed patients, and control subjects. Brain, Behavior, and Immunity, 17, 365372.Google Scholar
Jacka, F. N., O'Neil, A., Opie, R., Itsiopoulos, C., Cotton, S., Mohebbi, M., … Berk, M. (2017). A randomised controlled trial of dietary improvement for adults with major depression (the “SMILES” trial). BMC Medicine, 15, 23. doi:10.1186/s12916-017-0791-yGoogle Scholar
Jensen Peña, C., Monk, C., & Champagne, F. A. (2012). Epigenetic effects of prenatal stress on 11-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLOS ONE, 7, e39791. doi:10.1371/journal.pone.0039791Google Scholar
Keenan, K., Hipwell, A. E., Bortner, J., Hoffmann, A., & McAloon, R. (2014). Association between fatty acid supplementation and prenatal stress in African Americans: A randomized controlled trial. Obstetrics and Gynecology, 124, 10801087. doi:10.1097/AOG.0000000000000559Google Scholar
Khashan, A. S., Everard, C., McCowan, L. M. E., Dekker, G., Moss-Morris, R., Baker, P. N., … Kenny, L. C. (2014). Second-trimester maternal distress increases the risk of small for gestational age. Psychological Medicine, 44, 27992810. doi:10.1017/S0033291714000300Google Scholar
Kim, D. R., Bale, T. L., & Epperson, C. N. (2015). Prenatal programming of mental illness: Current understanding of relationship and mechanisms. Current Psychiatry Reports, 17, 5. doi:10.1007/s11920-014-0546-9Google Scholar
King, S., & Laplante, D. P. (2015). Using natural disasters to study prenatal maternal stress in humans. Advances in Neurobiology, 10, 285313. doi:10.1007/978-1-4939-1372-5_14.Google Scholar
Kofink, D., Boks, M. P. M., Timmers, H. T. M., & Kas, M. J. (2013). Epigenetic dynamics in psychiatric disorders: Environmental programming of neurodevelopmental processes. Neuroscience and Biobehavioral Reviews, 37, 831845. doi:10.1016/j.neubiorev.2013.03.020Google Scholar
Kolu, P., Raitanen, J., & Luoto, R. (2014). Physical activity and health-related quality of life during pregnancy: A secondary analysis of a cluster-randomised trial. Maternal and Child Health Journal, 18, 20982105. doi:10.1007/s10995-014-1457-4Google Scholar
Kusaka, M., Matsuzaki, M., Shiraishi, M., & Haruna, M. (2016). Immediate stress reduction effects of yoga during pregnancy: One group pre-post test. Women and Birth, 29, e82e88. doi:10.1016/j.wombi.2016.04.003Google Scholar
Lakshmy, R. (2013). Metabolic syndrome: Role of maternal undernutrition and fetal programming. Reviews in Endocrine & Metabolic Disorders, 14, 229240. doi:10.1007/s11154-013-9266-4Google Scholar
La Marca-Ghaemmaghami, P., Dainese, S. M., La Marca, R., Zimmermann, R., & Ehlert, U. (2015). The acute autonomic stress response and amniotic fluid glucocorticoids in second-trimester pregnant women. Psychosomatic Medicine, 77, 4149. doi:10.1097/PSY.0000000000000130Google Scholar
Lancaster, C. A., Gold, K. J., Flynn, H. A., Yoo, H., Marcus, S. M., & Davis, M. M. (2010). Risk factors for depressive symptoms during pregnancy: A systematic review. American Journal of Obstetrics and Gynecology, 202, 514. doi:10.1016/j.ajog.2009.09.007Google Scholar
Laraia, B. A., Siega-Riz, A. M., Dole, N., & London, E. (2009). Pregravid weight is associated with prior dietary restraint and psychosocial factors during pregnancy. Obesity, 17, 550558. doi:10.1038/oby.2008.585Google Scholar
Lee, L. J., Symanski, E., Lupo, P. J., Tinker, S. C., Razzaghi, H., Chan, W., … National Birth Defects Prevention Study. (2017). Role of maternal occupational physical activity and psychosocial stressors on adverse birth outcomes. Occupational and Environmental Medicine, 74, 192199. doi:10.1136/oemed-2016-103715Google Scholar
Littleton, H.L., Bye, K., Buck, K., Amacker, A. (2010). Psychosocial stress during pregnancy and perinatal outcomes: A meta-analytic review. Journal of Psychosomatic Obstetrics & Gynecology, 31, 219228. doi:10.3109/0167482X.2010.518776Google Scholar
Lobel, M., Cannella, D. L., Graham, J. E., DeVincent, C., Schneider, J., & Meyer, B. A. (2008). Pregnancy-specific stress, prenatal health behaviors, and birth outcomes. Health Psychology, 27, 604615. doi:10.1037/a0013242Google Scholar
Logan, A. C., & Jacka, F. N. (2014). Nutritional psychiatry research: An emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. Journal of Physiological Anthropology, 33, 22. doi:10.1186/1880-6805-33-22Google Scholar
Maccari, S., Krugers, H. J., Morley-Fletcher, S., Szyf, M., & Brunton, P. J. (2014). The consequences of early-life adversity: Neurobiological, behavioural and epigenetic adaptations. Journal of Neuroendocrinology, 26, 707723. doi:10.1111/jne.12175Google Scholar
Marques, A. H., Bjørke-Monsen, A.-L., Teixeira, A. L., & Silverman, M. N. (2015). Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology. Brain Research, 1617, 2846. doi:10.1016/j.brainres.2014.10.051Google Scholar
Martin, C. K., Nicklas, T., Gunturk, B., Correa, J. B., Allen, H. R., & Champagne, C. (2014). Measuring food intake with digital photography. Journal of Human Nutrition and Dietetics, 27, 7281. doi:10.1111/jhn.12014Google Scholar
Mathias, P. C. F., Elmhiri, G., de Oliveira, J. C., Delayre-Orthez, C., Barella, L. F., Tófolo, L. P., … Abdennebi-Najar, L. (2014). Maternal diet, bioactive molecules, and exercising as reprogramming tools of metabolic programming. European Journal of Nutrition, 53, 711722. doi:10.1007/s00394-014-0654-7Google Scholar
Matthews, S. G., & Phillips, D. I. (2012). Transgenerational inheritance of stress pathology. Experimental Neurology, 233, 95101. doi:10.1016/j.expneurol.2011.01.009Google Scholar
Mellor, R., Chua, S. C., & Boyce, P. (2014). Antenatal depression: An artefact of sleep disturbance? Archives of Women's Mental Health, 17, 291302. doi:10.1007/s00737-014-0427-6Google Scholar
Melzer, K., Schutz, Y., Boulvain, M., & Kayser, B. (2010). Physical activity and pregnancy. Sports Medicine, 40, 493507. doi:10.2165/11532290-000000000-00000Google Scholar
Mina, T. H., & Reynolds, R. M. (2014). Mechanisms linking in utero stress to altered offspring behaviour. Current Topics in Behavioral Neurosciences, 18, 93122. doi:10.1007/7854_2014_291Google Scholar
Monk, C., Georgieff, M. K., & Osterholm, E. A. (2013). Research Review: Maternal prenatal distress and poor nutrition—Mutually influencing risk factors affecting infant neurocognitive development. Journal of Child Psychology and Psychiatry, 54, 115130. doi:10.1111/jcpp.12000Google Scholar
Mourtakos, S. P., Tambalis, K. D., Panagiotakos, D. B., Antonogeorgos, G., Arnaoutis, G., Karteroliotis, K., & Sidossis, L. S. (2015). Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: A study of 5,125 children. BMC Pregnancy and Childbirth, 15, 66. doi:10.1186/s12884-015-0498-zGoogle Scholar
Nash, D. M., Gilliland, J. A., Evers, S. E., Wilk, P., & Campbell, M. K. (2013). Determinants of diet quality in pregnancy: Sociodemographic, pregnancy-specific, and food environment influences. Journal of Nutrition Education and Behavior, 45, 627634. doi:10.1016/j.jneb.2013.04.268Google Scholar
Newham, J. J., Wittkowski, A., Hurley, J., Aplin, J. D., & Westwood, M. (2014). Effects of antenatal yoga on maternal anxiety and depression: A randomized controlled trial. Depression and Anxiety, 31, 631640. doi:10.1002/da.22268Google Scholar
Newport, D. J., Ji, S., Long, Q., Knight, B. T., Zach, E. B., Smith, E. N., … Stowe, Z. N. (2012). Maternal depression and anxiety differentially impact fetal exposures during pregnancy. Journal of Clinical Psychiatry, 73, 247251. doi:10.4088/JCP.10m06783Google Scholar
O'Connor, T. G., Tang, W., Gilchrist, M. A., Moynihan, J. A., Pressman, E. K., & Blackmore, E. R. (2014). Diurnal cortisol patterns and psychiatric symptoms in pregnancy: Short-term longitudinal study. Biological Psychology, 96, 3541. doi:10.1016/j.biopsycho.2013.11.002Google Scholar
O'Donnell, K., O'Connor, T. G., & Glover, V. (2009). Prenatal stress and neurodevelopment of the child: Focus on the HPA axis and role of the placenta. Developmental Neuroscience, 31, 285292. doi:10.1159/000216539Google Scholar
Okun, M. L., & Coussons-Read, M. E. (2007). Sleep disruption during pregnancy: How does it influence serum cytokines? Journal of Reproductive Immunology, 73, 158165. doi:10.1016/j.jri.2006.06.006Google Scholar
Okun, M. L., Hall, M., & Coussons-Read, M. E. (2007). Sleep disturbances increase interleukin-6 production during pregnancy: Implications for pregnancy complications. Reproductive Sciences, 14, 560567. doi:10.1177/1933719107307647Google Scholar
Okun, M. L., Kiewra, K., Luther, J. F., Wisniewski, S. R., & Wisner, K. L. (2011). Sleep disturbances in depressed and nondepressed pregnant women. Depression and Anxiety, 28, 676685. doi:10.1002/da.20828Google Scholar
Okun, M. L., Kline, C. E., Roberts, J. M., Wettlaufer, B., Glover, K., & Hall, M. (2013). Prevalence of sleep deficiency in early gestation and its associations with stress and depressive symptoms. Journal of Women's Health, 22, 10281037. doi:10.1089/jwh.2013.4331Google Scholar
Okun, M. L., Roberts, J. M., Marsland, A. L., & Hall, M. (2009). How disturbed sleep may be a risk factor for adverse pregnancy outcomes: A hypothesis. Obstetrical & Gynecological Survey, 64, 273280. doi:10.1097/OGX.0b013e318195160eGoogle Scholar
Okun, M. L., Tolge, M., & Hall, M. (2014). Low socioeconomic status negatively affects sleep in pregnant women. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 43, 160167. doi:10.1111/1552-6909.12295Google Scholar
Omholt, M. L., Tveito, T. H., & Ihlebæk, C. (2017). Subjective health complaints, work-related stress and self-efficacy in Norwegian aircrew. Occupational Medicine (Oxford), 67, 135142. doi:10.1093/occmed/kqw127Google Scholar
Omisade, A., Buxton, O. M., & Rusak, B. (2010). Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiology & Behavior, 99, 651656. doi:10.1016/j.physbeh.2010.01.028Google Scholar
Padmanabhan, V., Cardoso, R. C., & Puttabyatappa, M. (2016). Developmental programming, a pathway to disease. Endocrinology, 157, 13281340. doi:10.1210/en.2016-1003Google Scholar
Palagini, L., Gemignani, A., Banti, S., Manconi, M., Mauri, M., & Riemann, D. (2014). Chronic sleep loss during pregnancy as a determinant of stress: Impact on pregnancy outcome. Sleep Medicine, 15, 853859. doi:10.1016/j.sleep.2014.02.013Google Scholar
Palatianou, M. E., Simos, Y. V., Andronikou, S. K., & Kiortsis, D. N. (2014). Long-term metabolic effects of high birth weight: A critical review of the literature. Hormone and Metabolic Research, 46, 911920. doi:10.1055/s-0034-1395561Google Scholar
Pien, G. W., & Schwab, R. J. (2004). Sleep disorders during pregnancy. Sleep, 27, 14051417.Google Scholar
Polo-Kantola, P., Aukia, L., Karlsson, H., Karlsson, L., & Paavonen, E. J. (2017). Sleep quality during pregnancy: Associations with depressive and anxiety symptoms. Acta Obstetricia Et Gynecologica Scandinavica, 96, 198206. doi:10.1111/aogs.13056Google Scholar
Prather, H., Spitznagle, T., & Hunt, D. (2012). Benefits of exercise during pregnancy. PM&R, 4, 845850. doi:10.1016/j.pmrj.2012.07.012Google Scholar
Qiu, C., Gelaye, B., Fida, N., & Williams, M. A. (2012). Short sleep duration, complaints of vital exhaustion and perceived stress are prevalent among pregnant women with mood and anxiety disorders. BMC Pregnancy and Childbirth, 12, 104. doi:10.1186/1471-2393-12-104Google Scholar
Qiu, C., Gelaye, B., Zhong, Q.-Y., Enquobahrie, D. A., Frederick, I. O., & Williams, M. A. (2016). Construct validity and factor structure of the Pittsburgh Sleep Quality Index among pregnant women in a Pacific-Northwest cohort. Sleep & Breathing, 20, 293301. doi:10.1007/s11325-016-1313-4Google Scholar
Räikkönen, K., Martikainen, S., Pesonen, A. K., Lahti, J., Heinonen, K., Pyhälä, R., … Kajantie, E. (2017). Maternal licorice consumption during pregnancy and pubertal, cognitive, and psychiatric outcomes in children. American Journal of Epidemiology, 185, 317328. doi:10.1093/aje/kww172Google Scholar
Räikkönen, K., Seckl, J. R., Pesonen, A.-K., Simons, A., & van den Bergh, B. R. H. (2011). Stress, glucocorticoids and liquorice in human pregnancy: Programmers of the offspring brain. Stress, 14, 590603. doi:10.3109/10253890.2011.602147Google Scholar
Rakers, F., Bischoff, S., Schiffner, R., Haase, M., Rupprecht, S., Kiehntopf, M., … Schwab, M. (2015). Role of catecholamines in maternal-fetal stress transfer in sheep. American Journal of Obstetrics and Gynecology, 213, 684. e19. doi:10.1016/j.ajog.2015.07.020Google Scholar
Rakers, F., Rupprecht, S., Dreiling, M., Bergmeier, C., Witte, O. W., & Schwab, M. (2017). Transfer of maternal psychosocial stress to the fetus. Neuroscience and Biobehavioral Reviews. Advance online publication. doi:10.1016/j.neubiorev.2017.02.019Google Scholar
Rallis, S., Skouteris, H., McCabe, M., & Milgrom, J. (2014). A prospective examination of depression, anxiety and stress throughout pregnancy. Women and Birth, 27, e36e42. doi:10.1016/j.wombi.2014.08.002Google Scholar
Ratnayake, U., Quinn, T., Walker, D. W., & Dickinson, H. (2013). Cytokines and the neurodevelopmental basis of mental illness. Frontiers in Neuroscience, 7, 180. doi:10.3389/fnins.2013.00180Google Scholar
Reynolds, R. M. (2016). Impact of maternal steroids during pregnancy. Annales d'Endocrinologie, 77, 677679. doi:10.1016/j.ando.2016.04.027Google Scholar
Roy, A., Evers, S. E., Avison, W. R., & Campbell, M. K. (2010). Higher zinc intake buffers the impact of stress on depressive symptoms in pregnancy. Nutrition Research, 30, 695704. doi:10.1016/j.nutres.2010.09.011Google Scholar
Ruiz-Robledillo, N., Canário, C., Dias, C. C., Moya-Albiol, L., & Figueiredo, B. (2015). Sleep during the third trimester of pregnancy: The role of depression and anxiety. Psychology, Health & Medicine, 20, 927932. doi:10.1080/13548506.2015.1017508Google Scholar
Salamonsen, L. A., Hannan, N. J., & Dimitriadis, E. (2007). Cytokines and chemokines during human embryo implantation: Roles in implantation and early placentation. Seminars in Reproductive Medicine, 25, 437444. doi:10.1055/s-2007-991041Google Scholar
Samuelsson, A.-M., Jennische, E., Hansson, H.-A., & Holmäng, A. (2006). Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290, R1345R1356. doi:10.1152/ajpregu.00268.2005Google Scholar
Santiago, J. R., Nolledo, M. S., Kinzler, W., & Santiago, T. V. (2001). Sleep and sleep disorders in pregnancy. Annals of Internal Medicine, 134, 396408.Google Scholar
Sarwer, D. B., Allison, K. C., Gibbons, L. M., Markowitz, J. T., & Nelson, D. B. (2006). Pregnancy and obesity: A review and agenda for future research. Journal of Women's Health, 15, 720733. doi:10.1089/jwh.2006.15.720Google Scholar
Satyapriya, M., Nagarathna, R., Padmalatha, V., & Nagendra, H. R. (2013). Effect of integrated yoga on anxiety, depression and well being in normal pregnancy. Complementary Therapies in Clinical Practice, 19, 230236. doi:10.1016/j.ctcp.2013.06.003Google Scholar
Schuurmans, C., & Kurrasch, D. (2013). Neurodevelopmental consequences of maternal distress: What do we really know? Clinical Genetics, 83, 108117. doi:10.1111/cge.12049Google Scholar
Sen, S., Carpenter, A. H., Hochstadt, J., Huddleston, J. Y., Kustanovich, V., Reynolds, A. A., & Roberts, S. (2012). Nutrition, weight gain and eating behavior in pregnancy: A review of experimental evidence for long-term effects on the risk of obesity in offspring. Physiology & Behavior, 107, 138145. doi:10.1016/j.physbeh.2012.04.014Google Scholar
Shalev, I., Entringer, S., Wadhwa, P. D., Wolkowitz, O. M., Puterman, E., Lin, J., & Epel, E. S. (2013). Stress and telomere biology: A lifespan perspective. Psychoneuroendocrinology, 38, 18351842. doi:10.1016/j.psyneuen.2013.03.010Google Scholar
Shankaran, S., Lester, B. M., Das, A., Bauer, C. R., Bada, H. S., Lagasse, L., & Higgins, R. (2007). Impact of maternal substance use during pregnancy on childhood outcome. Seminars in Fetal & Neonatal Medicine, 12, 143150. doi:10.1016/j.siny.2007.01.002Google Scholar
Shapiro, G. D., Fraser, W. D., Frasch, M. G., & Séguin, J. R. (2013). Psychosocial stress in pregnancy and preterm birth: Associations and mechanisms. Journal of Perinatal Medicine, 41, 631645. doi:10.1515/jpm-2012-0295Google Scholar
Sharma, S., Godbole, G., & Modi, D. (2016). Decidual control of trophoblast invasion. American Journal of Reproductive Immunology, 75, 341350. doi:10.1111/aji.12466Google Scholar
Silverman, M. N., & Sternberg, E. M. (2012). Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Annals of the New York Academy of Sciences, 1261, 5563. doi:10.1111/j.1749-6632.2012.06633.xGoogle Scholar
Spilsbury, J. C. (2009). Sleep as mediator in the pathway from violence-induced traumatic stress to poorer health and functioning: A review of the literature and proposed conceptual model. Behavioral Sleep Medicine, 7, 223244. doi:10.1080/15402000903190207Google Scholar
St.-Pierre, J., Laurent, L., King, S., & Vaillancourt, C. (2016). Effects of prenatal maternal stress on serotonin and fetal development. Placenta, 48, S66S71. doi:10.1016/j.placenta.2015.11.013Google Scholar
Sullivan, E. L., Riper, K. M., Lockard, R., & Valleau, J. C. (2015). Maternal high-fat diet programming of the neuroendocrine system and behavior. Hormones and Behavior, 76, 153161. doi:10.1016/j.yhbeh.2015.04.008Google Scholar
Sun, Y.-C., Hung, Y.-C., Chang, Y., & Kuo, S.-C. (2010). Effects of a prenatal yoga programme on the discomforts of pregnancy and maternal childbirth self-efficacy in Taiwan. Midwifery, 26, e31e36. doi:10.1016/j.midw.2009.01.005Google Scholar
Swanson, L. M., Pickett, S. M., Flynn, H., & Armitage, R. (2011). Relationships among depression, anxiety, and insomnia symptoms in perinatal women seeking mental health treatment. Journal of Women's Health, 20, 553558. doi:10.1089/jwh.2010.2371Google Scholar
Takahashi, F., Nishigori, H., Nishigori, T., Mizuno, S., Obara, T., Metoki, H., … Japan Environment & Children's Study Group. (2016). Fermented food consumption and psychological distress in pregnant women: A nationwide birth cohort study of the Japan Environment and Children's Study. Tohoku Journal of Experimental Medicine, 240, 309321. doi:10.1620/tjem.240.309Google Scholar
Tamanna, S., & Geraci, S. A. (2013). Major sleep disorders among women: Women's health series. Southern Medical Journal, 106, 470478. doi:10.1097/SMJ.0b013e3182a15af5Google Scholar
Taouk, L., Farrow, V. A., & Schulkin, J. (2017). Amount and quality of sleep: Exploring the role of stress and work experience in a sample of obstetrician-gynecologists. Journal of Psychosomatic Obstetrics and Gynaecology. Advance online publication. doi:10.1080/0167482X.2017.1320985Google Scholar
Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35, 147168. doi:10.1038/npp.2009.115Google Scholar
Teofilo, M. M. A., Farias, D. R., Pinto, T. de J. P., Vilela, A. A. F., Vaz, J. dos S., Nardi, A. E., & Kac, G. (2014). HDL-cholesterol concentrations are inversely associated with Edinburgh Postnatal Depression Scale scores during pregnancy: Results from a Brazilian cohort study. Journal of Psychiatric Research, 58, 181188. doi:10.1016/j.jpsychires.2014.07.030Google Scholar
Tomfohr, L. M., Buliga, E., Letourneau, N. L., Campbell, T. S., & Giesbrecht, G. F. (2015). Trajectories of sleep quality and associations with mood during the perinatal period. Sleep, 38, 12371245. doi:10.5665/sleep.4900Google Scholar
van den Bergh, B. R. H., van den Heuvel, M. I., Lahti, M., Braeken, M., de Rooij, S. R., Entringer, S., … Schwab, M. (2017). Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience and Biobehavioral Reviews. Advance online publication. doi:10.1016/j.neubiorev.2017.07.003Google Scholar
Vandrey, R., Babson, K. A., Herrmann, E. S., & Bonn-Miller, M. O. (2014). Interactions between disordered sleep, post-traumatic stress disorder, and substance use disorders. International Review of Psychiatry (Abingdon, England), 26, 237247. doi:10.3109/09540261.2014.901300Google Scholar
van Strien, T., Herman, C. P., Anschutz, D. J., Engels, R. C. M. E., & de Weerth, C. (2012). Moderation of distress-induced eating by emotional eating scores. Appetite, 58, 277284. doi:10.1016/j.appet.2011.10.005Google Scholar
van Strien, T., Ouwens, M. A., Engel, C., & de Weerth, C. (2014). Hunger, inhibitory control and distress-induced emotional eating. Appetite, 79, 124133. doi:10.1016/j.appet.2014.04.020Google Scholar
van Strien, T., Roelofs, K., & de Weerth, C. (2013). Cortisol reactivity and distress-induced emotional eating. Psychoneuroendocrinology, 38, 677684. doi:10.1016/j.psyneuen.2012.08.008Google Scholar
Vaz, J. dos S., Kac, G., Emmett, P., Davis, J. M., Golding, J., & Hibbeln, J. R. (2013). Dietary patterns, n-3 fatty acids intake from seafood and high levels of anxiety symptoms during pregnancy: Findings from the Avon Longitudinal Study of Parents and Children. PLOS ONE, 8, e67671. doi:10.1371/journal.pone.0067671Google Scholar
Vega, S. R., Kleinert, J., Sulprizio, M., Hollmann, W., Bloch, W., & Strüder, H. K. (2011). Responses of serum neurotrophic factors to exercise in pregnant and postpartum women. Psychoneuroendocrinology, 36, 220227. doi:10.1016/j.psyneuen.2010.07.012Google Scholar
Verly-Miguel, M. V. B., Farias, D. R., Pinto, T. de J. P., Lepsch, J., Nardi, A. E., & Kac, G. (2015). Serum docosahexaenoic acid (DHA) is inversely associated with anxiety disorders in early pregnancy. Journal of Anxiety Disorders, 30, 3440. doi:10.1016/j.janxdis.2014.12.002Google Scholar
Vilela, A. A. F., Pinto, T. de J. P., Rebelo, F., Benaim, C., Lepsch, J., Dias-Silva, C. H., … Kac, G. (2015). Association of prepregnancy dietary patterns and anxiety symptoms from midpregnancy to early postpartum in a prospective cohort of Brazilian women. Journal of the Academy of Nutrition and Dietetics, 115, 16261635. doi:10.1016/j.jand.2015.01.007Google Scholar
Voegtline, K. M., Costigan, K. A., Kivlighan, K. T., Laudenslager, M. L., Henderson, J. L., & DiPietro, J. A. (2013). Concurrent levels of maternal salivary cortisol are unrelated to self-reported psychological measures in low-risk pregnant women. Archives of Women's Mental Health, 16, 101108. doi:10.1007/s00737-012-0321-zGoogle Scholar
Volkovich, E., Tikotzky, L., & Manber, R. (2016). Objective and subjective sleep during pregnancy: Links with depressive and anxiety symptoms. Archives of Women's Mental Health, 19, 173181. doi:10.1007/s00737-015-0554-8Google Scholar
Westerneng, M., Witteveen, A. B., Warmelink, J. C., Spelten, E., Honig, A., & de Cock, P. (2017). Pregnancy-specific anxiety and its association with background characteristics and health-related behaviors in a low-risk population. Comprehensive Psychiatry, 75, 613. doi:10.1016/j.comppsych.2017.02.002Google Scholar
Wroble-Biglan, M. C., Dietz, L. J., & Pienkosky, T. V. (2009). Prediction of infant temperament from catecholamine and self-report measures of maternal stress during pregnancy. Journal of Reproductive and Infant Psychology, 27, 374389. doi:10.1080/02646830903190912Google Scholar
Zhong, Q.-Y., Gelaye, B., Sánchez, S. E., & Williams, M. A. (2015). Psychometric properties of the Pittsburgh Sleep Quality Index (PSQI) in a cohort of Peruvian pregnant women. Journal of Clinical Sleep Medicine, 11, 869877. doi:10.5664/jcsm.4936Google Scholar
Zijlmans, M. A. C., Korpela, K., Riksen-Walraven, J. M., de Vos, W. M., & de Weerth, C. (2015). Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 53, 233245. doi:10.1016/j.psyneuen.2015.01.006Google Scholar
Zijlmans, M. A. C., Riksen-Walraven, J. M., & de Weerth, C. (2015). Associations between maternal prenatal cortisol concentrations and child outcomes: A systematic review. Neuroscience and Biobehavioral Reviews, 53, 124. doi:10.1016/j.neubiorev.2015.02.015Google Scholar