Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T21:55:56.244Z Has data issue: false hasContentIssue false

Maternal abuse history and reduced fetal heart rate variability: Abuse-related sleep disturbance is a mediator

Published online by Cambridge University Press:  20 October 2016

Hanna Gustafsson*
Affiliation:
Columbia University Medical Center
Colleen Doyle
Affiliation:
University of Minnesota
Michelle Gilchrist
Affiliation:
DePaul University
Elizabeth Werner
Affiliation:
Columbia University Medical Center
Catherine Monk
Affiliation:
Columbia University Medical Center New York State Psychiatric Institute
*
Address correspondence and reprint requests to: Hanna Gustafsson, Columbia University Medical Center, 640 West 168th Street, PH1540, New York, NY 10032; E-mail: hg2366@columbia.edu.

Abstract

The consequences of childhood maltreatment are profound and long lasting. Not only does the victim of abuse suffer as a child, but there is mounting evidence that a history of maltreatment places the next generation at risk for significant psychopathology. Research identifies postnatal factors as affecting this intergenerational transmission of trauma. However, emerging evidence suggests that part of this risk may be transmitted before birth, passed on via abuse-related alterations in the in utero environment that are as yet largely unidentified. To date, no study has directly assessed the influence of pregnant women's abuse history on fetal neurobehavioral development, nor considered trauma-associated poor sleep quality as a mediator reflecting established physiological dysregulation. Using data from 262 pregnant adolescents (ages 14–19), a population at elevated risk for childhood maltreatment, the current study examined maternal emotional abuse history and sleep quality in relation to third-trimester fetal resting heart rate variability, an index of parasympathetic nervous system functioning. The results indicate that maternal emotional abuse history is indirectly associated with lower fetal heart rate variability via abuse-related sleep disturbances. These data demonstrate an association between maternal abuse histories and fetal development, showing that at least part of the intergenerational transmission of risk occurs during pregnancy.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by grants from the National Institute of Mental Health (R01MH077144 and R01MH093677) and by a postdoctoral fellowship in behavioral medicine awarded by the Herbert H. and Ruth S. Reiner fellowship fund.

References

Adrien, J. (2002). Neurobiological bases for the relation between sleep and depression. Sleep Medicine Reviews, 6, 341351.CrossRefGoogle ScholarPubMed
Allison, P. D. (2003). Missing data techniques for structural equation modeling. Journal of Abnormal Psychology, 112, 545557.Google Scholar
Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229240.Google Scholar
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In Marcoulides, G. A. & Schumacker, R. E. (Eds.), Advanced structural equation modeling (pp. 243277). Mahwah, NJ: Erlbaum.Google Scholar
Atkinson, G., & Davenne, D. (2007). Relationships between sleep, physical activity and human health. Physiology & Behavior, 90, 229235.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.CrossRefGoogle ScholarPubMed
Beitchman, J. H., Zucker, K. J., Hood, J. E., DaCosta, G. A., Akman, D., & Cassavia, E. (1992). A review of the long-term effects of child sexual abuse. Child Abuse and Neglect, 16, 101118.Google Scholar
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238246.Google Scholar
Bernstein, D. P., Ahluvalia, T., Pogge, D., & Handelsman, L. (1997). Validity of the Childhood Trauma Questionnaire in an adolescent psychiatric population. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 340348.Google Scholar
Bernstein, D. P., & Fink, L. (1998). Childhood Trauma Questionnaire: A retrospective self–report: Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Bernstein, D. P., Fink, L., Handelsman, L., Foote, J., Lovejoy, M., Wenzel, K., . . . Ruggiero, J. (1994). Initial reliability and validity of a new retrospective measure of child abuse and neglect. American Journal of Psychiatry, 151, 11321136.Google ScholarPubMed
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Zule, W. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse and Neglect, 27, 169190.Google Scholar
Berzenski, S. R., Yates, T. M., & Egeland, B. (2014). A multidimensional view of continuity in intergenerational transmission of child maltreatment. In Korbin, J. E. & Krugman, R. D. (Eds.), Handbook of child maltreatment (pp. 115129). Dordrecht: Springer.Google Scholar
Bifulco, A., Moran, P. M., Ball, C., Jacobs, C., Baines, R., Bunn, A., & Cavagin, J. (2002). Childhood adversity, parental vulnerability and disorder: Examining inter-generational transmission of risk. Journal of Child Psychology and Psychiatry, 43, 10751086.Google Scholar
Briere, J., & Runtz, M. (1987). Post sexual abuse trauma data and implications for clinical practice. Journal of Interpersonal Violence, 2, 367379.Google Scholar
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In Bollen, K. A. & Long, J. S. (Eds.), Testing structural equation models (pp. 136162). Newbury Park, CA: Sage.Google Scholar
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28, 193213.Google Scholar
Calkins, S. D., Graziano, P. A., & Keane, S. P. (2007). Cardiac vagal regulation differentiates among children at risk for behavior problems. Biological Psychology, 74, 144153.Google Scholar
Carpenter, J. S., & Andrykowski, M. A. (1998). Psychometric evaluation of the Pittsburgh Sleep Quality Index. Journal of Psychosomatic Research, 45, 513.CrossRefGoogle ScholarPubMed
Chang, J. J., Pien, G. W., Duntley, S. P., & Macones, G. A. (2010). Sleep deprivation during pregnancy and maternal and fetal outcomes: Is there a relationship? Sleep Medicine Reviews, 14, 107114.Google Scholar
Cicchetti, D., & Carlson, V. (Eds.) (1989). Child maltreatment: Theory and research on the causes and consequences of child abuse and neglect. New York: Cambridge University Press.Google Scholar
Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, S. L. (2010). The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Development, 81, 252269.CrossRefGoogle ScholarPubMed
Dalton, K. J., Dawes, G. S., & Patrick, J. E. (1983). The autonomic nervous system and fetal heart rate variability. American Journal of Obstetrics and Gynecology, 146, 456462.CrossRefGoogle ScholarPubMed
Danieli, Y. (Ed.). (1998). International handbook of multigenerational legacies of trauma. New York: Plenum Press.CrossRefGoogle Scholar
Davis, E. P., Glynn, L. M., Schetter, C. D., Hobel, C., Chicz-Demet, A., & Sandman, C. A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 737746.Google Scholar
Davis, E. P., & Sandman, C. A. (2010). The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development, 81, 131148.Google Scholar
Dipietro, J. A. (2012). Maternal stress in pregnancy: Considerations for fetal development. Journal of Adolescent Health, 51, S3S8.Google Scholar
DiPietro, J. A., Bornstein, M. H., Hahn, C. S., Costigan, K., & Achy-Brou, A. (2007). Fetal heart rate and variability: Stability and prediction to developmental outcomes in early childhood. Child Development, 78, 17881798.Google Scholar
DiPietro, J. A., Caulfield, L., Costigan, K. A., Merialdi, M., Nguyen, R. H., Zavaleta, N., & Gurewitsch, E. D. (2004). Fetal neurobehavioral development: A tale of two cities. Developmental Psychology, 40, 445456.CrossRefGoogle ScholarPubMed
DiPietro, J. A., Costigan, K. A., Pressman, E. K., & Doussard-Roosevelt, J. A. (2000). Antenatal origins of individual differences in heart rate. Developmental Psychobiology, 37, 221228.Google Scholar
DiPietro, J. A., Ghera, M. M., & Costigan, K. A. (2008). Prenatal origins of temperamental reactivity in early infancy. Early Human Development, 84, 569575.Google Scholar
DiPietro, J. A., Hilton, S. C., Hawkins, M., Costigan, K. A., & Pressman, E. K. (2002). Maternal stress and affect influence fetal neurobehavioral development. Developmental Psychology, 38, 659668.Google Scholar
DiPietro, J. A., Hodgson, D. M., Costigan, K. A., Hilton, S. C., & Johnson, T. R. (1996). Fetal neurobehavioral development. Child Development, 67, 25532567.Google Scholar
Dixon, L., Browne, K., & Hamilton-Giachritsis, C. (2005). Risk factors of parents abused as children: A mediational analysis of the intergenerational continuity of child maltreatment (Part I). Journal of Child Psychology and Psychiatry, 46, 4757.Google Scholar
Dole, N., Savitz, D. A., Hertz-Picciotto, I., Siega-Riz, A. M., McMahon, M. J., & Buekens, P. (2003). Maternal stress and preterm birth. American Journal of Epidemiology, 157, 1424.CrossRefGoogle ScholarPubMed
Doyle, C., Werner, E., Feng, T., Lee, S., Altemus, M., Isler, J. R., & Monk, C. (2015). Pregnancy distress gets under fetal skin: Maternal ambulatory assessment and sex differences in prenatal development. Developmental Psychobiology. Advance online publication.Google Scholar
Freeman, R. K., Garite, T. J., Nageotte, M. P., & Miller, L. A. (Eds.). (2012). Fetal heart rate monitoring. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Field, T., Diego, M., & Hernandez-Reif, M. (2006). Prenatal depression effects on the fetus and newborn: A review. Infant Behavior and Development, 29, 445455.Google Scholar
Field, T., Diego, M., Hernandez-Reif, M., Figueiredo, B., Schanberg, S., & Kuhn, C. (2007). Sleep disturbances in depressed pregnant women and their newborns. Infant Behavior and Development, 30, 127133.Google Scholar
Fleisher, L. A., Dipietro, J. A., Johnson, T. R., & Pincus, S. (1997). Complementary and non-coincident increases in heart rate variability and irregularity during fetal development. Clinical Science, 92(Pt. 4), 345349.Google Scholar
Gavin, A. R., Hill, K. G., Hawkins, J. D., & Maas, C. (2011). The role of maternal early-life and later-life risk factors on offspring low birth weight: Findings from a three-generational study. Journal of Adolescent Health, 49, 166171.Google Scholar
Glod, C. A., Teicher, M. H., Hartman, C. R., Harakal, T., & McGreenery, C. E. (1997). Enduring effects of early abuse on locomotor activity, sleep, and circadian rhythms. Annals of the New York Academy of Sciences, 821, 465467.CrossRefGoogle ScholarPubMed
Glover, V. (2011). Annual Research Review: Prenatal stress and the origins of psychopathology: An evolutionary perspective. Journal of Child Psychology and Psychiatry, 52, 356367.Google Scholar
Greenfield, E. A., Lee, C., Friedman, E. L., & Springer, K. W. (2011). Childhood abuse as a risk factor for sleep problems in adulthood: Evidence from a US national study. Annals of Behavioral Medicine, 42, 245256.CrossRefGoogle ScholarPubMed
Grimstad, H., & Schei, B. (1999). Pregnancy and delivery for women with a history of child sexual abuse. Child Abuse and Neglect, 23, 8190.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.Google Scholar
Harris, A., & Seckl, J. (2011). Glucocorticoids, prenatal stress and the programming of disease. Hormones and Behavior, 59, 279289.Google Scholar
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76, 408420.Google Scholar
Heim, C., Newport, D. J., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2003). Altered pituitary–adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Focus, 1, 282289.CrossRefGoogle Scholar
Hillis, S. D., Anda, R. F., Dube, S. R., Felitti, V. J., Marchbanks, P. A., & Marks, J. S. (2004). The association between adverse childhood experiences and adolescent pregnancy, long-term psychosocial consequences, and fetal death. Pediatrics, 113, 320327.Google Scholar
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 155.Google Scholar
Kendall-Tackett, K. (2002). The health effects of childhood abuse: Four pathways by which abuse can influence health. Child Abuse & Neglect, 26, 715729.CrossRefGoogle ScholarPubMed
Kinsella, M. T., & Monk, C. (2009). Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clinical Obstetrics and Gynecology, 52, 425440.CrossRefGoogle ScholarPubMed
Kivlighan, K. T., DiPietro, J. A., Costigan, K. A., & Laudenslager, M. L. (2008). Diurnal rhythm of cortisol during late pregnancy: Associations with maternal psychological well-being and fetal growth. Psychoneuroendocrinology, 33, 12251235.Google Scholar
Korbin, J. E., & Krugman, R. D. (2014). Handbook of child maltreatment. New York: Springer.Google Scholar
Lee, K. A. (1998). Alterations in sleep during pregnancy and postpartum: A review of 30 years of research. Sleep Medicine Reviews, 2, 231242.CrossRefGoogle ScholarPubMed
Lee, K. A., & Gay, C. L. (2004). Sleep in late pregnancy predicts length of labor and type of delivery. American Journal of Obstetrics and Gynecology, 191, 20412046.Google Scholar
Li, H., Zhang, L., Fang, Z., Lin, L., Wu, C., & Huang, Q. (2010). Behavioral and neurobiological studies on the male progeny of maternal rats exposed to chronic unpredictable stress before pregnancy. Neuroscience Letters, 469, 278282.Google Scholar
Liggins, G. C. (1994). The role of cortisol in preparing the fetus for birth. Reproduction, Fertility and Development, 6, 141150.CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1, 173181.Google Scholar
Mathieu, J. E., & Taylor, S. R. (2006). Clarifying conditions and decision points for mediational type inferences in organizational behavior. Journal of Organizational Behavior, 27, 10311056.Google Scholar
Mellman, T. A., & Hipolito, M. M. S. (2006). Sleep disturbances in the aftermath of trauma and posttraumatic stress disorder. CNS Spectrums, 11, 611615.Google Scholar
Monk, C., Feng, T., Lee, S., Krupska, I., Champagne, F. A., & Tycko, B. (2016). Distress during pregnancy: Epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. American Journal of Psychiatry, 173, 705713.Google Scholar
Monk, C., Fifer, W. P., Myers, M. M., Bagiella, E., Duong, J. K., Chen, I. S., . . . Altincatal, A. (2011). Effects of maternal breathing rate, psychiatric status, and cortisol on fetal heart rate. Developmental Psychobiology, 53, 221233.Google Scholar
Monk, C., Fifer, W. P., Myers, M. M., Sloan, R. P., Trien, L., & Hurtado, A. (2000). Maternal stress responses and anxiety during pregnancy: Effects on fetal heart rate. Developmental Psychobiology, 36, 6777.Google Scholar
Monk, C., Sloan, R. P., Myers, M. M., Ellman, L., Werner, E., Jeon, J., . . . Fifer, W. P. (2004). Fetal heart rate reactivity differs by women's psychiatric status: An early marker for developmental risk? Journal of the American Academy of Child & Adolescent Psychiatry, 43, 283290.CrossRefGoogle ScholarPubMed
Monk, C., Spicer, J., & Champagne, F. A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Development and Psychopathology, 24, 13611376.Google Scholar
Moore, M. S. (1989). Disturbed attachment in children: A function in sleep disturbance, altered dream production and immune dysfunction. Part 1. Not safe to sleep: Chronic sleep disturbances in anxious attachment. Journal of Child Psychotherapy , 15, 99111.Google Scholar
Morrison, D. N., McGee, R., & Stanton, W. R. (1992). Sleep problems in adolescence. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 9499.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user's guide (7th ed.). Los Angeles: Author.Google Scholar
Myers, J. E. (Ed.). (2002). American Professional Society on the Abuse of Children handbook on child maltreatment (3rd ed.). Thousand Oaks, CA: Sage.Google Scholar
O'Brien, E., Coats, A., Owens, P., Petrie, J., Padfield, P. L., Littler, W. A., . . . Mee, F. (2000). Use and interpretation of ambulatory blood pressure monitoring: Recommendations of the British Hypertension Society. British Medical Journal, 320, 11281134.Google Scholar
O'Connor, T. G., Bergman, K., Sarkar, P., & Glover, V. (2013). Prenatal cortisol exposure predicts infant cortisol response to acute stress. Developmental Psychobiology, 55, 145155.Google Scholar
O'Connor, T. G., Heron, J., Golding, J., Glover, V., & ALSPAC Study Team (2003). Maternal antenatal anxiety and behavioural/emotional problems in children: A test of a programming hypothesis. Journal of Child Psychology and Psychiatry, 44, 10251036.Google Scholar
Ogueh, O., & Steer, P. J. (1998). Ethnicity and fetal heart rate variation. Obstetrics and Gynecology, 91, 324328.Google Scholar
Okun, M. L., & Coussons-Read, M. E. (2007). Sleep disruption during pregnancy: How does it influence serum cytokines? Journal of Reproductive Immunology, 73, 158165.Google Scholar
Okun, M. L., Roberts, J. M., Marsland, A. L., & Hall, M. (2009). How disturbed sleep may be a risk factor for adverse pregnancy outcomes a hypothesis. Obstetrical and Gynecological Survey, 64, 273.Google Scholar
Ouyang, M., Hellman, K., Abel, T., & Thomas, S. A. (2004). Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep. Journal of Neurophysiology, 92, 20712082.Google Scholar
Pears, K. C., & Capaldi, D. M. (2001). Intergenerational transmission of abuse: A two-generational prospective study of an at-risk sample. Child Abuse and Neglect , 25, 14391461.Google Scholar
Perry, N. B., Mackler, J. S., Calkins, S. D., & Keane, S. P. (2014). A transactional analysis of the relation between maternal sensitivity and child vagal regulation. Developmental Psychology, 50, 784.Google Scholar
Plant, D. T., Barker, E. D., Waters, C. S., Pawlby, S., & Pariante, C. M. (2013). Intergenerational transmission of maltreatment and psychopathology: The role of antenatal depression. Psychological Medicine, 43, 519528.Google Scholar
Ponzio, N. M., Servatius, R., Beck, K., Marzouk, A., & Kreider, T. I. M. (2007). Cytokine levels during pregnancy influence immunological profiles and neurobehavioral patterns of the offspring. Annals of the New York Academy of Sciences, 1107, 118128.Google Scholar
Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42, 123146.Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143.Google Scholar
Porges, S. W., Doussard-Roosevelt, J. A., & Maiti, A. K. (1994). Vagal tone and the physiological regulation of emotion. Monographs of the Society for Research in Child Development, 59(2–3), 167186.Google Scholar
Pressman, E. K., DiPietro, J. A., Costigan, K. A., Shupe, A. K., & Johnson, T. R. B. (1998). Fetal neurobehavioral development: Associations with socioeconomic class and fetal sex. Developmental Psychobiology, 33, 7991.Google Scholar
Propper, C., Moore, G. A., Mills-Koonce, W. R., Halpern, C. T., Hill-Soderlund, A. L., Calkins, S. D., . . . Cox, M. (2008). Gene-environment contributions to the development of infant vagal reactivity: The interaction of dopamine and maternal sensitivity. Child Development, 79, 13771394.Google Scholar
Reynolds, W. M. (1987). Reynolds Adolescent Depression Scale (RADS-20). Lutz, FL: PAR.Google Scholar
Reynolds, W. M., & Mazza, J. J. (1998). Reliability and validity of the Reynolds Adolescent Depression Scale with young adolescents. Journal of School Psychology, 36, 295312.Google Scholar
Roberts, R., O'Connor, T., Dunn, J., & Golding, J. (2004). The effects of child sexual abuse in later family life: Mental health, parenting and adjustment of offspring. Child Abuse and Neglect, 28, 525545.Google Scholar
Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations. Social and Personality Psychology Compass, 5, 359371.Google Scholar
Ryzhavskii, B. Y., Sokolova, T. V., Uchakina, R. V., Fel'dsherov, Y. I., Sapozhnikov, Y. A., Vasil'eva, E. V., & Eremenko, I. R. (2002). Effect of emotional stress experienced by female rats before pregnancy on brain development in their offspring. Bulletin of Experimental Biology and Medicine, 134, 126129.Google Scholar
Sadeh, A., McGuire, J. P., Sachs, H., Seifer, R., Tremblay, A., Civita, R., & Hayden, R. M. (1995). Sleep and psychological characteristics of children on a psychiatric inpatient unit. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 813819.Google Scholar
Scher, C. D., Stein, M. B., Asmundson, G. J., McCreary, D. R., & Forde, D. R. (2001). The childhood trauma questionnaire in a community sample: Psychometric properties and normative data. Journal of Traumatic Stress, 14, 843857.Google Scholar
Schumacker, R. E., & Lomax, R. G. (1996). A beginner's guide to structural equation modeling. Mahwah, NJ: Erlbaum.Google Scholar
Seckl, J. R. (2004). Prenatal glucocorticoids and long-term programming. European Journal of Endocrinology, 151(Suppl. 3), U49U62.Google Scholar
Seng, J. S., D'Andrea, W., & Ford, J. D. (2014). Complex mental health sequelae of psychological trauma among women in prenatal care. Psychological Trauma: Theory, Research, Practice, and Policy, 6, 4149.Google Scholar
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422445.Google Scholar
Smith, S. E., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. Journal of Neuroscience, 27, 1069510702.Google Scholar
Sotero, M. (2006). A conceptual model of historical trauma: Implications for public health practice and research. Journal of Health Disparities Research and Practice, 1, 93108.Google Scholar
Spertus, I. L., Yehuda, R., Wong, C. M., Halligan, S., & Seremetis, S. V. (2003). Childhood emotional abuse and neglect as predictors of psychological and physical symptoms in women presenting to a primary care practice. Child Abuse and Neglect, 27, 12471258.Google Scholar
Spicer, J., Werner, E., Zhao, Y., Choi, C. W., Lopez-Pintado, S., Feng, T., … Monk, C. (2013). Ambulatory assessments of psychological and peripheral stress-markers predict birth outcomes in teen pregnancy. Journal of Psychosomatic Research, 75, 305313.Google Scholar
Sroufe, L. A., Egeland, B., Carlson, E. A., & Collins, W. A. (2009). The development of the person: The Minnesota study of risk and adaptation from birth to adulthood. New York: Guilford Press.Google Scholar
Stein, M. B., Yehuda, R., Koverola, C., & Hanna, C. (1997). Enhanced dexamethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biological Psychiatry, 42, 680686.Google Scholar
Stevens-Simon, C., & McAnarney, E. R. (1994). Childhood victimization: Relationship to adolescent pregnancy outcome. Child Abuse and Neglect, 18, 569575.Google Scholar
Talge, N. M., Neal, C., Glover, V., & Early Stress, Translational Research and Prevention Science Network. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48, 245261.Google Scholar
Teegen, F. (1999). Childhood sexual abuse and long-term sequelae. In Maercker, A., Schutzwohl, M., & Solomon, Z. (Eds.), Post-traumatic stress disorder: A lifespan developmental perspective (pp. 97112). Seattle, WA: Hogrefe & Huber.Google Scholar
Teicher, M. H., Samson, J. A., Polcari, A., & McGreenery, C. E. (2006). Sticks, stones, and hurtful words: Relative effects of various forms of childhood maltreatment. American Journal of Psychiatry, 163, 9931000.Google Scholar
Thomas, P. W., Haslum, M. N., MacGillivray, I., & Golding, M. J. (1989). Does fetal heart rate predict subsequent heart rate in childhood? Early Human Development, 19, 147152.Google Scholar
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 110.Google Scholar
Wadhwa, P. D. (2005). Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology, 30, 724743.Google Scholar
Wadhwa, P. D., Culhane, J. F., Rauh, V., & Barve, S. S. (2001). Stress and preterm birth: Neuroendocrine, immune/inflammatory, and vascular mechanisms. Maternal and Child Health Journal, 5, 119125.Google Scholar
Wadhwa, P. D., Entringer, S., Buss, C., & Lu, M. C. (2011). The contribution of maternal stress to preterm birth: Issues and considerations. Clinics in Perinatology, 38, 351384.Google Scholar
Wadhwa, P. D., Sandman, C. A., & Garite, T. J. (2001). The neurobiology of stress in human pregnancy: Implications for prematurity and development of the fetal central nervous system. Progress in Brain Research, 133, 131142.Google Scholar
Wadhwa, P. D., Sandman, C. A., Porto, M., Dunkel-Schetter, C., & Garite, T. J. (1993). The association between prenatal stress and infant birth weight and gestational age at birth: A prospective investigation. American Journal of Obstetrics and Gynecology, 169, 858865.Google Scholar
Weinstock, M. (2005). The potential influence of maternal stress hormones on developmental and mental health of the offspring. Brain Behavior and Immunity, 19, 296308.Google Scholar
Welberg, L. A. M., & Seckl, J. R. (2001). Prenatal stress, glucocorticoids and the programming of the brain. Journal of Neuroendocrinology, 13, 113128.Google Scholar
Werner, E. A., Gustafsson, H. C., Lee, S., Feng, T., Jiang, N., Desai, P., & Monk, C. (2016). PREPP: Postpartum depression prevention through the mother-infant dyad. Archives of Women's Mental Health, 19, 229242.Google Scholar
Werner, E. A., Zhao, Y., Evans, L., Kinsella, M., Kurzius, L., Altincatal, A., . . . Monk, C. (2013). Higher maternal prenatal cortisol and younger age predict greater infant reactivity to novelty at 4 months: An observation-based study. Developmental Psychobiology, 55, 707718.Google Scholar
Yehuda, R., & Bierer, L. M. (2007). Transgenerational transmission of cortisol and PTSD risk. Progress in Brain Research, 167, 121135.Google Scholar
Yehuda, R., Teicher, M. H., Seckl, J. R., Grossman, R. A., Morris, A., & Bierer, L. M. (2007). Parental posttraumatic stress disorder as a vulnerability factor for low cortisol trait in offspring of Holocaust survivors. Archives of General Psychiatry, 64, 10401048.Google Scholar