Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T03:39:54.803Z Has data issue: false hasContentIssue false

Premorbid risk factors for major depressive disorder: Are they associated with early onset and recurrent course?

Published online by Cambridge University Press:  25 November 2014

Sylia Wilson
Affiliation:
University of Minnesota
Uma Vaidyanathan
Affiliation:
University of Minnesota
Michael B. Miller
Affiliation:
University of Minnesota
Matt McGue
Affiliation:
University of Minnesota
William G. Iacono*
Affiliation:
University of Minnesota
*
Address correspondence and reprint requests to: William G. Iacono, Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455; E-mail: wiacono@umn.edu.

Abstract

Premorbid risk for major depressive disorder (MDD) and predictors of an earlier onset and recurrent course were examined in two studies in a large, community-based sample of parents and offspring, prospectively assessed from late childhood into adulthood. In Study 1 (N = 2,764 offspring and their parents), parental psychiatric status, offspring personality at age 11, and age 11 offspring internalizing and externalizing symptoms predicted the subsequent development of MDD, as did poor quality parent–child relationships, poor academic functioning, early pubertal development, and childhood maltreatment by age 11. Parental MDD and adult antisocial behavior, offspring negative emotionality and disconstraint, externalizing symptoms, and childhood maltreatment predicted an earlier onset of MDD, after accounting for course; lower positive emotionality, trait anxiety, and childhood maltreatment predicted recurrent MDD, after accounting for age of onset. In Study 2 (N = 7,146), we examined molecular genetic risk for MDD by extending recent reports of associations with glutamatergic system genes. We failed to confirm associations with MDD using either individual single nucleotide polymorphism based tests or gene-based analyses. Overall, results speak to the pervasiveness of risk for MDD, as well as specific risk for early onset MDD; risk for recurrent MDD appears to be largely a function of its often earlier onset.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25, 2529.Google Scholar
Autry, A. E., Adachi, M., Nosyreva, E., Na, E. S., Los, M. F., Cheng, P. F., et al. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475, 9195.CrossRefGoogle ScholarPubMed
Bardone, A. M., Moffitt, T. E., Caspi, A., Dickson, N., & Silva, P. A. (1996). Adult mental health and social outcomes of adolescent girls with depression and conduct disorder. Development and Psychopathology, 8, 811829.Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory—II. San Antonio, TX: Psychological Corporation.Google Scholar
Beesdo, K., Hofler, M., Leibenluft, E., Lieb, R., Bauer, M., & Pfennig, A. (2009). Mood episodes and mood disorders: Patterns of incidence and conversion in the first three decades of life. Bipolar Disorders, 11, 637649.Google Scholar
Beevers, C. G., Rohde, P., Stice, E., & Nolen-Hoeksema, S. (2007). Recovery from major depressive disorder among female adolescents: A prospective test of the scar hypothesis. Journal of Consulting & Clinical Psychology, 75, 888900.Google Scholar
Bemmels, H. R., Burt, S. A., Legrand, L. N., Iacono, W. G., & McGue, M. (2008). The heritability of life events: An adolescent twin and adoption study. Twin Research and Human Genetics, 11, 257265.CrossRefGoogle ScholarPubMed
Billig, J. P., Hershberger, S. L., Iacono, W. G., & McGue, M. (1996). Life events and personality in late adolescence: Genetic and environmental relations. Behavior Genetics, 26, 543554.Google Scholar
Bland, R. C., Newman, S. C., & Orn, H. (1986). Recurrent and nonrecurrent depression. A family study. Archives of General Psychiatry, 43, 10851089.CrossRefGoogle ScholarPubMed
Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P., Posthuma, D., et al. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular Psychiatry, 16, 516532.CrossRefGoogle ScholarPubMed
Breslau, J., Michael, L., Nancy, S. B., & Kessler, R. C. (2008). Mental disorders and subsequent educational attainment in a US national sample. Journal of Psychiatric Research, 42, 708716.Google Scholar
Browning, B. L., & Browning, S. R. (2009). A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. American Journal of Human Genetics, 84, 210223.Google Scholar
Burcusa, S. L., & Iacono, W. G. (2007). Risk for recurrence in depression. Clinical Psychology Review, 27, 959985.Google Scholar
Capizzano, A. A., Jorge, R. E., Acion, L. C., & Robinson, R. G. (2007). In vivo proton magnetic resonance spectroscopy in patients with mood disorders: A technically oriented review. Journal of Magnetic Resonance Imaging, 26, 13781389.Google Scholar
Chapman, D. P., Perry, G. S., & Strine, T. W. (2005). The vital link between chronic disease and depressive disorders. Preventing Chronic Disease, 2, 110.Google ScholarPubMed
Clark, L. A., & Watson, D. (1991). Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100, 316336.Google Scholar
Copeland, W. E., Shanahan, L., Worthman, C., Angold, A., & Costello, E. J. (2012). Cumulative depression episodes predict later C-reactive protein levels: A prospective analysis. Biological Psychiatry, 71, 1521.Google Scholar
Coryell, W., Endicott, J., & Keller, M. B. (1992). Major depression in a nonclinical sample: Demographic and clinical risk factors for first onset. Archives of General Psychiatry, 49, 117125.Google Scholar
Costello, E. J., Erkanli, A., & Angold, A. (2006). Is there an epidemic of child or adolescent depression? Journal of Child Psychology and Psychiatry, 47, 12631271.Google Scholar
Cukrowicz, K. C., Taylor, J., Schatschneider, C., & Iacono, W. G. (2006). Personality differences in children and adolescents with attention-deficit/hyperactivity disorder, conduct disorder, and controls. Journal of Child Psychology and Psychiatry, 47, 151159.Google Scholar
de Graaf, R., Bijl, R. V., Ravelli, A., Smit, F., & Vollebergh, W. A. (2002). Predictors of first incidence of DSM-III-R psychiatric disorders in the general population: Findings from the Netherlands Mental Health Survey and Incidence Study. Acta Psychiatrica Scandinavica, 106, 303313.Google Scholar
Dick, D. M. (2011). Gene–environment interaction in psychological traits and disorders. Annual Review of Clinical Psychology, 7, 383409.CrossRefGoogle ScholarPubMed
Dobson, K. S., & Dozois, D. J. A. (2008). Risk factors in depression. San Diego, CA: Academic Press.Google Scholar
Duggan, C. F., Lee, A. S., & Murray, R. M. (1990). Does personality predict long-term outcome in depression? British Journal of Psychiatry, 157, 1924.CrossRefGoogle ScholarPubMed
Duggan, C. F., Sham, P., Lee, A. S., & Murray, R. M. (1991). Does recurrent depression lead to a change in neuroticism? Psychological Medicine, 21, 985990.CrossRefGoogle ScholarPubMed
Durbin, C. E., Klein, D. N., Hayden, E. P., Buckley, M. E., & Moerk, K. C. (2005). Temperamental emotionality in preschoolers and parental mood disorders. Journal of Abnormal Psychology, 114, 2837.Google Scholar
Eaton, W. W., Shao, H., Nestadt, G., Lee, B. H., Bienvenu, O. J., & Zandi, P. (2008). Population-based study of first onset and chronicity in major depressive disorder. Archives of General Psychiatry, 65, 513520.CrossRefGoogle ScholarPubMed
Elkins, I. J., McGue, M., & Iacono, W. G. (1997). Genetic and environmental influences on parent–son relationships: Evidence for increasing genetic influence during adolescence. Developmental Psychology, 33, 351363.CrossRefGoogle ScholarPubMed
Fanous, A. H., Neale, M. C., Aggen, S. H., & Kendler, K. S. (2007). A longitudinal study of personality and major depression in a population-based sample of male twins. Psychological Medicine, 37, 11631172.Google Scholar
Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2007). Recurrence of major depression in adolescence and early adulthood, and later mental health, educational and economic outcomes. British Journal of Psychiatry, 191, 335342.CrossRefGoogle ScholarPubMed
Fergusson, D. M., & Woodward, L. J. (2002). Mental health, educational, and social role outcomes of adolescents with depression. Archives of General Psychiatry, 59, 225231.Google Scholar
Frank, E., Prien, R. F., Jarrett, R. B., Keller, M. B., Kupfer, D. J., Lavori, P. W., et al. (1991). Conceptualization and rationale for consensus definitions of terms in major depressive disorder: Remission, recovery, relapse, and recurrence. Archives of General Psychiatry, 48, 851855.Google Scholar
Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851861.Google Scholar
Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Jager, M., Groll, C., et al. (2003). Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biological Psychiatry, 53, 338344.Google Scholar
Glessner, J. T., Wang, K., Cai, G. Q., Korvatska, O., Kim, C. E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569573.Google Scholar
Hamdi, N. R., & Iacono, W. G. (2014). Lifetime prevalence and co-morbidity of externalizing disorders and depression in prospective assessment. Psychological Medicine, 44, 315324.Google Scholar
Hammen, C., Brennan, P. A., & Keenan-Miller, D. (2008). Patterns of adolescent depression to age 20: The role of maternal depression and youth interpersonal dysfunction. Journal of Abnormal Child Psychology, 36, 11891198.CrossRefGoogle ScholarPubMed
Hammen, C., Brennan, P. A., Keenan-Miller, D., & Herr, N. R. (2008). Early onset recurrent subtype of adolescent depression: Clinical and psychosocial correlates. Journal of Child Psychology and Psychiatry, 49, 433440.Google Scholar
Han, S. Z., Yang, B. Z., Kranzler, H. R., Liu, X. M., Zhao, H. Y., Farrer, L. A., et al. (2013). Integrating GWASs and human protein interaction networks identifies a gene subnetwork underlying alcohol dependence. American Journal of Human Genetics, 93, 10271034.Google Scholar
Hashimoto, K. (2009). Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Research Reviews, 61, 105123.Google Scholar
Hashimoto, K., Sawa, A., & Iyo, M. (2007). Increased levels of glutamate in brains from patients with mood disorders. Biological Psychiatry, 62, 13101316.Google Scholar
Hasin, D. S., Goodwin, R. D., Stinson, F. S., & Grant, B. F. (2005). Epidemiology of major depressive disorder: Results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Archives of General Psychiatry, 62, 10971106.Google Scholar
Hek, K., Demirkan, A., Lahti, J., Terracciano, A., Teumer, A., Cornelis, M. C., et al. (2013). A genome-wide association study of depressive symptoms. Biological Psychiatry, 73, 667678.Google Scholar
Hicks, B. M., Iacono, W. G., & McGue, M. (2014). Identifying childhood characteristics that underlie premorbid risk for substance use disorders: Socialization and boldness. Development and Psychopathology, 26, 141157.Google Scholar
Hicks, B. M., Johnson, W., Durbin, C. E., Blonigen, D. M., Iacono, W. G., & McGue, M. (2014). Delineating selection and mediation effects among childhood personality and environmental risk factors in the development of adolescent substance abuse. Journal of Abnormal Child Psychology, 42, 845859.Google Scholar
Hirschfeld, R. M. A., Montgomery, S. A., Keller, M. B., Kasper, S., Schatzberg, A. F., Moller, H. J., et al. (2000). Social functioning in depression: A review. Journal of Clinical Psychiatry, 61, 268275.Google Scholar
Holmans, P., Green, E. K., Pahwa, J. S., Ferreira, M. A. R., Purcell, S. M., Sklar, P., et al. (2009). Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. American Journal of Human Genetics, 85, 1324.Google Scholar
Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., & Abecasis, G. R. (2012). Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature Genetics, 44, 955959.Google Scholar
Iacono, W. G., Carlson, S. R., Taylor, J., Elkins, I. J., & McGue, M. (1999). Behavioral disinhibition and the development of substance-case disorders: Findings from the Minnesota Twin Family Study. Development and Psychopathology, 11, 869900.CrossRefGoogle ScholarPubMed
Iacono, W. G., & McGue, M. (2002). Minnesota Twin Family Study. Twin Research, 5, 482487.Google Scholar
Iacono, W. G., McGue, M., & Krueger, R. F. (2006). Minnesota Center for Twin and Family Research. Twin Research and Human Genetics, 9, 978984.Google Scholar
Jaffee, S. R., Moffitt, T. E., Caspi, A., Fombonne, E., Poulton, R., & Martin, J. (2002). Differences in early childhood risk factors for juvenile-onset and adult-onset depression. Archives of General Psychiatry, 59, 215222.CrossRefGoogle ScholarPubMed
John, O. P., Caspi, A., Robins, R. W., Moffitt, T. E., & Stouthamer-Loeber, M. (1994). The “little five”: Exploring the nomological network of the five-factor model of personality in adolescent boys. Child Development, 65, 160178.Google Scholar
Johnson, W., McGue, M., & Iacono, W. G. (2006). Genetic and environmental influences on academic achievement trajectories during adolescence. Developmental Psychology, 42, 514532.Google Scholar
Jonsson, U., Bohman, H., Hjern, A., von Knorring, L., Paaren, A., Olsson, G., et al. (2011). Intimate relationships and childbearing after adolescent depression: A population-based 15-year follow-up study. Social Psychiatry and Psychiatric Epidemiology, 46, 711721.Google Scholar
Judd, L. L., Paulus, M. J., Schettler, P. J., Akiskal, H. S., Endicott, J., Leon, A. C., et al. (2000). Does incomplete recovery from first lifetime major depressive episode herald a chronic course of illness? American Journal of Psychiatry, 157, 15011504.Google Scholar
Keenan-Miller, D., Hammen, C. L., & Brennan, P. A. (2007). Health outcomes related to early adolescent depression. Journal of Adolescent Health, 41, 256262.CrossRefGoogle ScholarPubMed
Keller, M. B., Lavori, P. W., Mueller, T. I., Endicott, J., Coryell, W., Hirschfeld, R. M. A., et al. (1992). Time to recovery, chronicity, and levels of psychopathology in major depression: A 5-year prospective follow-up of 431 subjects. Archives of General Psychiatry, 49, 809816.CrossRefGoogle ScholarPubMed
Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). Personality and major depression: A Swedish longitudinal, population-based twin study. Archives of General Psychiatry, 63, 11131120.Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1993). A longitudinal twin study of personality and major depression in women. Archives of General Psychiatry, 50, 853862.Google Scholar
Kessler, R. C. (2012). The costs of depression. Psychiatric Clinics of North America, 35, 114.Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., et al. (2003). The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). Journal of the American Medical Association, 289, 30953105.Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593602.Google Scholar
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.Google Scholar
Klein, D. N., Lewinsohn, P. M., Rohde, P., Seeley, J. R., & Durbin, C. E. (2002). Clinical features of major depressive disorder in adolescents and their relatives: Impact on familial aggregation, implications for phenotype definition, and specificity of transmission. Journal of Abnormal Psychology, 111, 98106.Google Scholar
Klein, D. N., Lewinsohn, P. M., Seeley, J. R., & Rohde, P. (2001). A family study of major depressive disorder in a community sample of adolescents. Archives of General Psychiatry, 58, 1320.Google Scholar
Klein, D. N., Shankman, S. A., Lewinsohn, P. M., Rohde, P., & Seeley, J. R. (2004). Family study of chronic depression in a community sample of young adults. American Journal of Psychiatry, 161, 646653.Google Scholar
Kohli, M. A., Lucae, S., Saemann, P. G., Schmidt, M. V., Demirkan, A., Hek, K., et al. (2011). The neuronal transporter gene SLC6A15 confers risk to major depression. Neuron, 70, 252265.Google Scholar
Kotov, R., Gamez, W., Schmidt, F., & Watson, D. (2010). Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. Psychological Bulletin, 136, 768821.Google Scholar
Kovacs, M., Devlin, B., Pollock, M., Richards, C., & Mukerji, P. (1997). A controlled family history study of childhood-onset depressive disorder. Archives of General Psychiatry, 54, 613623.CrossRefGoogle ScholarPubMed
Kovacs, M., Feinberg, T. L., Crouse-Novak, M., Paulauskas, S. L., Pollock, M., & Finkelstein, R. (1984). Depressive disorders in childhood: II. A longitudinal study of the risk for a subsequent major depression. Archives of General Psychiatry, 41, 643649.Google Scholar
Kupfer, D. J., & Frank, E. (2001). The interaction of drug- and psychotherapy in the long-term treatment of depression. Journal of Affective Disorders, 62, 131137.Google Scholar
Lee, P. H., Perlis, R. H., Jung, J. Y., Byrne, E. M., Rueckert, E., Siburian, R., et al. (2012). Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. Translational Psychiatry, 2. doi:10.1038/tp.2012.95 Google Scholar
Lewinsohn, P. M., Allen, N. B., Seeley, J. R., & Gotlib, I. H. (1999). First onset versus recurrence of depression: Differential processes of psychosocial risk. Journal of Abnormal Psychology, 108, 483489.CrossRefGoogle ScholarPubMed
Lewinsohn, P. M., Clarke, G. N., Seeley, J. R., & Rohde, P. (1994). Major depression in community adolescents: Age at onset, episode duration, and time to recurrence. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 809818.Google Scholar
Lewinsohn, P. M., Rohde, P., Seeley, J. R., Klein, D. N., & Gotlib, I. H. (2003). Psychosocial functioning of young adults who have experienced and recovered from major depressive disorder during adolescence. Journal of Abnormal Psychology, 112, 353363.Google Scholar
Lewinsohn, P. M., Seeley, J. R., Hibbard, J., Rohde, P., & Sack, W. H. (1996). Cross-sectional and prospective relationships between physical morbidity and depression in older adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 11201129.Google Scholar
Lewis, C. M., Ng, M. Y., Butler, A. W., Cohen-Woods, S., Uher, R., Pirlo, K., et al. (2010). Genome-wide association study of major recurrent depression in the UK population. American Journal of Psychiatry, 167, 949957.Google Scholar
Li, C.-X., Wang, Y., Gao, H., Pan, W.-J., Xiang, Y., Huang, M., et al. (2008). Cerebral metabolic changes in a depression-like rat model of chronic forced swimming studied by ex vivo high resolution 1H magnetic resonance spectroscopy. Neurochemical Research, 33, 23422349.Google Scholar
Li, X., Basu, S., Miller, M. B., Iacono, W. G., & McGue, M. (2011). A rapid generalized least squares model for a genome-wide quantitative trait association analysis in families. Human Heredity, 71, 6782.Google Scholar
Lips, E. S., Cornelisse, L. N., Toonen, R. F., Min, J. L., Hultman, C. M., International Schizophrenia Consortium, et al. (2012). Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Molecular Psychiatry, 17, 9961006.Google Scholar
Liu, J. Z., Mcrae, A. F., Nyholt, D. R., Medland, S. E., Wray, N. R., Brown, K. M., et al. (2010). A versatile gene-based test for genome-wide association studies. American Journal of Human Genetics, 87, 139145.Google Scholar
Lohoff, F. W. (2010). Overview of the genetics of major depressive disorder. Current Psychiatry Reports, 12, 539546.Google Scholar
Lonigan, C. J., Phillips, B. M., & Hooe, E. S. (2003). Relations of positive and negative affectivity to anxiety and depression in children: Evidence from a latent variable longitudinal study. Journal of Consulting and Clinical Psychology, 71, 465481.Google Scholar
Lopez-Leon, S., Janssens, A. C. J. W., Ladd, A. M. G. Z., Del-Favero, J., Claes, S. J., Oostra, B. A., et al. (2008). Meta-analyses of genetic studies on major depressive disorder. Molecular Psychiatry, 13, 772785.Google Scholar
Lubke, G. H., Hottenga, J. J., Walters, R., Laurin, C., de Geus, E. J. C., Willemsen, G., et al. (2012). Estimating the genetic variance of major depressive disorder due to all single nucleotide polymorphisms. Biological Psychiatry, 72, 707709.Google Scholar
Machado-Vieira, R., Salvadore, G., DiazGranados, N., & Zarate, C. A. (2009). Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacology & Therapeutics, 123, 143150.Google Scholar
Maeng, S., & Zarate, C. A. Jr., (2007). The role of glutamate in mood disorders: Results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Current Psychiatry Reports, 9, 467474.Google Scholar
Marmorstein, N. R., Iacono, W. G., & Legrand, L. (2014). Obesity and depression in adolescence and beyond: Reciprocal risks. International Journal of Obesity, 38, 906911.CrossRefGoogle ScholarPubMed
Mattisson, C., Bogren, M., Horstmann, V., Munk-Jorgensen, P., & Nettelbladt, P. (2007). The long-term course of depressive disorders in the Lundby Study. Psychological Medicine, 37, 883891.Google Scholar
McGue, M., Keyes, M., Sharma, A., Elkins, I., Legrand, L., Johnson, W., et al. (2007). The environments of adopted and non-adopted youth: Evidence on range restriction from the Sibling Interaction and Behavior Study (SIBS). Behavior Genetics, 37, 449462.Google Scholar
McGuffin, P., Katz, R., Watkins, S., & Rutherford, J. (1996). A hospital-based twin register of the heritability of DSM-IV unipolar depression. Archives of General Psychiatry, 53, 129136.Google Scholar
Miller, M. B., Basu, S., Cunningham, J., Eskin, E., Malone, S. M., Oetting, W. S., et al. (2012). The Minnesota Center for Twin and Family Research genome-wide association study. Twin Research and Human Genetics, 15, 767774.Google Scholar
Mineka, S., Watson, D., & Clark, L. A. (1998). Comorbidity of anxiety and unipolar mood disorders. Annual Review of Psychology, 49, 377412.Google Scholar
Mirza, Y., Tang, J., Russell, A., Banerjee, S. P., Bhandari, R., Ivey, J., et al. (2004). Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 341348.Google Scholar
Moffitt, T. E., Caspi, A., Taylor, A., Kokaua, J., Milne, B. J., Polanczyk, G., et al. (2010). How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychological Medicine, 40, 899909.Google Scholar
Muglia, P., Tozzi, F., Galwey, N. W., Francks, C., Upmanyu, R., Kong, X. Q., et al. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry, 15, 589601.Google Scholar
Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology, 50, 295322.Google Scholar
Olino, T. M., Shankman, S. A., Klein, D. N., Seeley, J. R., Pettit, J. W., Farmer, R. F., et al. (2012). Lifetime rates of psychopathology in single versus multiple diagnostic assessments: Comparison in a community sample of probands and siblings. Journal of Psychiatric Research, 46, 12171222.Google Scholar
Oliva, E. M., Keyes, M., Iacono, W. G., & McGue, M. (2012). Adolescent substance use groups: Antecedent and concurrent personality differences in a longitudinal study. Journal of Personality, 80, 769793.Google Scholar
Ormel, J., Oldehinkel, A. J., Nolen, W. A., & Vollebergh, W. (2004). Psychosocial disability before, during, and after a major depressive episode: A 3-wave population-based study of state, scar, and trait effects. Archives of General Psychiatry, 61, 387392.Google Scholar
Ormel, J., Oldehinkel, A. J., & Vollebergh, W. (2004). Vulnerability before, during, and after a major depressive episode: A 3-wave population-based study. Archives of General Psychiatry, 61, 990996.Google Scholar
Paul, I. A., & Skolnick, P. (2003). Glutamate and depression: Clinical and preclinical studies. Annals of the New York Academy of Sciences, 1003, 250272.CrossRefGoogle ScholarPubMed
Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117133.Google Scholar
Pettit, J. W., Hartley, C., Lewinsohn, P. M., Seeley, J. R., & Klein, D. N. (2013). Is liability to recurrent major depressive disorder present before first episode onset in adolescence or acquired after the initial episode? Journal of Abnormal Psychology, 122, 353358.Google Scholar
Pettit, J. W., Lewinsohn, P. M., Roberts, R. E., Seeley, J. R., & Monteith, L. (2009). The long-term course of depression: Development of an empirical index and identification of early adult outcomes. Psychological Medicine, 39, 403412.Google Scholar
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904909.CrossRefGoogle ScholarPubMed
Puig-Antich, J., Kaufman, J., Ryan, N. D., Williamson, D. E., Dahl, R. E., Lukens, E., et al. (1993). The psychosocial functioning and family environment of depressed adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 32, 244253.Google Scholar
Rao, U., Hammen, C., & Daley, S. E. (1999). Continuity of depression during the transition to adulthood: A 5-year longitudinal study of young women. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 908915.Google Scholar
Rao, U., Ryan, N. D., Birmaher, B., Dahl, R. E., Williamson, D. E., Kaufman, J., et al. (1995). Unipolar depression in adolescents: Clinical outcome in adulthood. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 566578.Google Scholar
Raudenbush, S. W., Bryk, A. S., & Congdon, R. T. (2004). HLM 6 for Windows. Skokie, IL: Scientific Software International, Inc. Google Scholar
Raychaudhuri, S., Plenge, R. M., Rossin, E. J., Ng, A. C. Y., Consortium, I. S., Purcell, S. M., et al. (2009). Identifying relationships among genomic disease regions: Predicting genes at pathogenic SNP associations and rare deletions. PLOS Genetics, 5, 115.Google Scholar
Reich, W., & Welner, Z. (1988). Diagnostic Interview for Children and Adolescents—Revised: DSM-III-R version (DICA-R). St. Louis, MO: Washington University.Google Scholar
Rice, F., Harold, G., & Thapar, A. (2002). The genetic aetiology of childhood depression: A review. Journal of Child Psychology and Psychiatry, 43, 6579.Google Scholar
Rietschel, M., Mattheisen, M., Frank, J., Treutlein, J., Degenhardt, F., Breuer, R., et al. (2010). Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression. Biological Psychiatry, 68, 578585.Google Scholar
Rohde, P., Lewinsohn, P. M., Klein, D. N., Seeley, J. R., & Gau, J. M. (2013). Key characteristics of major depressive disorder occurring in childhood, adolescence, emerging adulthood, adulthood. Clinical Psychological Science, 1, 4153.Google Scholar
Romera, I., Perez, V., Menchon, J. M., Delgado-Cohen, H., Polavieja, P., & Gilaberte, I. (2010). Social and occupational functioning impairment in patients in partial versus complete remission of a major depressive disorder episode. A six-month prospective epidemiological study. European Psychiatry, 25, 5865.Google Scholar
Rosenberg, D. R., MacMaster, F. P., Mirza, Y., Smith, J. M., Easter, P. C., Banerjee, S. P., et al. (2005). Reduced anterior cingulate glutamate in pediatric major depression: A magnetic resonance spectroscopy study. Biological Psychiatry, 58, 700704.Google Scholar
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47, 226261.Google Scholar
Sartorius, N. (2001). The economic and social burden of depression. Journal of Clinical Psychiatry, 62, 811.Google Scholar
Shea, M. T., Leon, A. C., Mueller, T. I., Solomon, D. A., Warshaw, M. G., & Keller, M. B. (1996). Does major depression result in lasting personality change? American Journal of Psychiatry, 153, 14041410.Google Scholar
Sheline, Y. I., Gado, M. H., & Price, J. L. (1998). Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport, 9, 20232028.CrossRefGoogle ScholarPubMed
Shi, J., Potash, J. B., Knowles, J. A., Weissman, M. M., Coryell, W., Scheftner, W. A., et al. (2011). Genome-wide association study of recurrent early-onset major depressive disorder. Molecular Psychiatry, 16, 193201.Google Scholar
Shyn, S. I., Shi, J., Kraft, J. B., Potash, J. B., Knowles, J. A., Weissman, M. M., et al. (2011). Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Molecular Psychiatry, 16, 202215.Google Scholar
Sihvola, E., Rose, R. J., Dick, D. M., Pulkkinen, L., Marttunen, M., & Kaprio, J. (2008). Early-onset depressive disorders predict the use of addictive substances in adolescence: A prospective study of adolescent Finnish twins. Addiction, 103, 20452053.Google Scholar
Solomon, D. A., Keller, M. B., Leon, A. C., Mueller, T. I., Lavori, P. W., Shea, M. T., et al. (2000). Multiple recurrences of major depressive disorder. American Journal of Psychiatry, 157, 229233.Google Scholar
Spielberger, C. D. (1983). Manual for the State–Trait Anxiety Inventory (rev. ed.). Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Spitzer, R. L., Endicott, J., & Robins, E. (1978). Research diagnostic criteria: Rationale and reliability. Archives of General Psychiatry, 35, 773782.Google Scholar
Spitzer, R. L., Williams, J. B. W., Gibbon, M., & First, M. B. (1987). Structured Clinical Interview for DSM-III-R (SCID). New York: New York State Psychiatric Institute, Biometrics Research Division.Google Scholar
Sullivan, P. F. (2007). Spurious genetic associations. Biological Psychiatry, 61, 11211126.Google Scholar
Sullivan, P. F., Daly, M. J., Ripke, S., Lewis, C. M., Lin, D. Y., Wray, N. R., et al. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18, 497511.Google Scholar
Sullivan, P. F., de Geus, E. J. C., Willemsen, G., James, M. R., Smit, J. H., Zandbelt, T., et al. (2009). Genome-wide association for major depressive disorder: A possible role for the presynaptic protein piccolo. Molecular Psychiatry, 14, 359375.Google Scholar
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. American Journal of Psychiatry, 157, 15521562.Google Scholar
Swendsen, J. D., & Merikangas, K. R. (2000). The comorbidity of depression and substance use disorders. Clinical Psychology Review, 20, 173189.Google Scholar
Tackett, J. L., Krueger, R. F., Iacono, W. G., & McGue, M. (2008). Personality in middle childhood: A hierarchical structure and longitudinal connections with personality in late adolescence. Journal of Research in Personality, 42, 14561462.Google Scholar
Tellegen, A., & Waller, N. G. (2008). Exploring personality through test construction: Development of the Multidimensional Personality Questionnaire. In Boyle, G. J., Matthews, G. & Saklofske, D. H. (Eds.), Handbook of personality theory and testing: Vol. 2. Personality measurement and assessment (pp. 261292). Thousand Oaks, CA: Sage.Google Scholar
Thapar, A., Harold, G., Rice, F., Langley, K., & O'Donovan, M. (2007). The contribution of gene–environment interaction to psychopathology. Development and Psychopathology, 19, 9891004.Google Scholar
Üstün, T. B., Ayuso-Mateos, J. L., Chatterji, S., Mathers, C., & Murray, C. J. L. (2004). Global burden of depressive disorders in the year 2000. British Journal of Psychiatry, 184, 386392.Google Scholar
Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98, 219–215.CrossRefGoogle Scholar
Weissman, M. M., Wickramaratne, P., Merikangas, K. R., Leckman, J. F., Prusoff, B. A., Caruso, K. A., et al. (1984). Onset of major depression in early adulthood: Increased familial loading and specificity. Archives of General Psychiatry, 41, 11361143.Google Scholar
Weissman, M. M., Wolk, S., Goldstein, R. B., Moreau, D., Adams, P., Greenwald, S., et al. (1999). Depressed adolescents grown up. Journal of the American Medical Association, 281, 17071713.Google Scholar
Weller, R. A., Kapadia, P., Weller, E. B., Fristad, M., Lazaroff, L. B., & Preskorn, S. H. (1994). Psychopathology in families of children with major depressive disorders. Journal of Affective Disorders, 31, 247252.Google Scholar
Wetter, E. K., & Hankin, B. L. (2009). Mediational pathways through which positive and negative emotionality contribute to anhedonic symptoms of depression: A prospective study of adolescents. Journal of Abnormal Child Psychology, 37, 507520.Google Scholar
Wichers, M., Geschwind, N., van Os, J., & Peeters, F. (2010). Scars in depression: Is a conceptual shift necessary to solve the puzzle? Psychological Medicine, 40, 359365.Google Scholar
Wickramaratne, P. J., Warner, V., & Weissman, M. M. (2000). Selecting early onset MDD probands for genetic studies: Results from a longitudinal high-risk study. American Journal of Medical Genetics, 96, 93101.Google Scholar
Wilson, S., DiRago, A. C., & Iacono, W. G. (2014). Prospective inter-relationships between late adolescent personality and major depressive disorder in early adulthood. Psychological Medicine, 44, 567577.Google Scholar
Wilson, S., Hicks, B. M., Foster, K. T., McGue, M., & Iacono, W. G. (in press). Age of onset and course of major depressive disorder: Associations with psychosocial functioning outcomes in adulthood. Psychological Medicine.Google Scholar
World Health Organization. (2010). International statistical classification of diseases and related health problems (10th ed.). Geneva: Author.Google Scholar
Wray, N. R., Pergadia, M. L., Blackwood, D. H. R., Penninx, B. W. J. H., Gordon, S. D., Nyholt, D. R., et al. (2012). Genome-wide association study of major depressive disorder: New results, meta-analysis, and lessons learned. Molecular Psychiatry, 17, 3648.Google Scholar
Yildiz-Yesiloglu, A., & Ankerst, D. P. (2006). Review of 1-H magnetic resonance spectroscopy findings in major depressive disorder: A meta-analysis. Psychiatry Research: Neuroimaging, 147, 125.Google Scholar
Zisook, S., Lesser, I., Stewart, J. W., Wisniewski, S. R., Balasubramani, G. K., Fava, M., et al. (2007). Effect of age at onset on the course of major depressive disorder. American Journal of Psychiatry, 164, 15391546.Google Scholar
Zisook, S., Rush, A. J., Albala, A., Alpert, J., Balasubramani, G. K., Fava, M., et al. (2004). Factors that differentiate early vs. later onset of major depression disorder. Psychiatry Research, 129, 127140.Google Scholar