Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T14:14:56.123Z Has data issue: false hasContentIssue false

Risky shifts: How the timing and course of mothers' depressive symptoms across the perinatal period shape their own and infant's stress response profiles

Published online by Cambridge University Press:  18 April 2011

Heidemarie K. Laurent*
Affiliation:
University of Wyoming
Jennifer C. Ablow
Affiliation:
University of Oregon
Jeffrey Measelle
Affiliation:
University of Oregon
*
Address correspondence and reprint requests to: Heidemarie Laurent, Department of Psychology, Department 3415, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071; E-mail: hlaurent@uwyo.edu.

Abstract

We investigated the effects of timing and the course of maternal perinatal depressive symptoms on mother–infant hypothalamic–pituitary–adrenal (HPA) response profiles during an attachment stressor, as well as on within-dyad synchrony of stress profiles: coordination of HPA and sympathetic nervous system and infant–mother HPA attunement. Mothers (n = 86) completed the Center for Epidemiological Studies Depression Scale during pregnancy (Time 1 [T1]) and at 5 months (T2) and 18 months (T3) postnatal. At T3 mother–infant dyads completed the Strange Situation, and four saliva samples collected from both mothers and infants were assayed for cortisol and α-amylase. Hierarchical linear modeling was used to predict mother–infant cortisol response trajectories and within-dyad synchronies by main and interactive effects of T1–T3 Center for Epidemiological Studies Depression Scale scores. Main effects of earlier (T1, T2) depressive symptoms predicted mothers' cortisol trajectories and coordination, and interactions of T1 with postnatal (T2 and T3) symptoms predicted infants' cortisol trajectories, coordination, and attunement. Decomposition of interactions revealed more marked effects on infant cortisol trajectories when the mother shifted from higher to lower depressive symptoms (or vice versa) across the perinatal period. Shifts from lower to higher symptoms also predicted inverse coordination of cortisol with salivary α-amylase and greater attunement of infant with mother cortisol. Implications for the development and transmission of stress dysregulation are discussed.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the Strange Situation. Hillsdale, NJ: Erlbaum.Google Scholar
Ashman, S. B., Dawson, G., Panagiotides, H., Yamada, E., & Wilkinson, C. W. (2002). Stress hormone levels of children of depressed mothers. Development and Psychopathology, 14, 333349.Google Scholar
Bauer, A. M., Quas, J. A., & Boyce, W. T. (2002). Associations between physiological reactivity and children's behavior: Advantages of a multisystem approach. Journal of Developmental and Behavioral Pediatrics, 23, 102113.CrossRefGoogle ScholarPubMed
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56, 893897.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 13, 271301.Google Scholar
Brennan, P. A., Pargas, R., Walker, E. F., Green, P., Newport, D. J., & Stowe, Z. (2008). Maternal depression and infant cortisol: Influences of timing, comorbidity and treatment. Journal of Child Psychology and Psychiatry, 49, 10991107.Google Scholar
Britton, K. T., Segal, D. S., Kuczenski, R., & Hauger, R. (1992). Dissociation between in vivo hippocampal norepinehrine response and behavioral neuroendocrine responses to noise stress in rats. Brain Research, 574, 125130.Google Scholar
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30, 846856.Google Scholar
Buss, K. A., Davidson, R. J., Kalin, N. H., & Goldsmith, H. H. (2004). Context specific freezing and associated physiological reactivity as a dysregulated fear response. Developmental Psychology, 40, 583594.CrossRefGoogle ScholarPubMed
Buss, K. A., Malmstadt-Schumacher, J., Dolski, I., Kalin, N. A., Goldsmith, H. H., & Davidson, R. J. (2003). Right frontal brain activity, cortisol, and withdraw behavior in 6 month old infants. Behavioral Neuroscience, 117, 1120.CrossRefGoogle Scholar
Chatterton, R. T. Jr., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clinical Physiology, 16, 433448.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.CrossRefGoogle ScholarPubMed
Davis, E. P., & Granger, D. A. (2009). Developmental differences in infant salivary alpha-amylase and cortisol responses to stress. Psychoneuroendocrinology, 34, 795804.Google Scholar
Davis, E. P., Snidman, N., Wadhwa, P. D., Glynn, L. M., Schetter, C. D., & Sandman, C. A. (2004). Prenatal maternal anxiety and depression predict negative behavioral reactivity in infancy. Infancy, 6, 319331.Google Scholar
Dawson, G., & Ashman, S. B. (2000). On the origins of a vulnerability to depression: The influence of the early social environment on the development of psychobiological systems related to risk for affective disorder. In Nelson, C. A. (Ed.), Minnesota Symposia on Child Psychology: Vol. 31. The effects of adversity on neurobehavioral development (pp. 245280). Mahwah, NJ: Erlbaum.Google Scholar
Diego, M. A., Field, T., Hernandez-Reif, M., Cullen, C., Schanberg, S., & Kuhn, C. (2004). Prepartum, postpartum, and chronic depression effects on newborns. Psychiatry, 67, 6380.Google Scholar
Dipietro, J. A., Costigan, K. A., & Gurewitsch, E. D. (2003). Fetal response to induced maternal stress. Early Human Development, 74, 125138.CrossRefGoogle ScholarPubMed
Egliston, K., McMahon, C., & Austin, M. (2007). Stress in pregnancy and infant HPA axis function: Conceptual and methodological issues relating to the use of salivary cortisol as an outcome measure. Psychoneuroendocrinology, 32, 113.CrossRefGoogle Scholar
El-Sheikh, M., Buckhalt, J. A., Erath, S. A., Granger, D. A., & Mize, J. (2008). Cortisol and children's adjustment: The moderating role of sympathetic nervous system activity. Journal of Abnormal Child Psychology, 36, 601611.CrossRefGoogle ScholarPubMed
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784.CrossRefGoogle ScholarPubMed
Field, T., Diego, M., Hernandez-Reif, M., Figueiredo, B., Schanberg, S., & Kuhn, C. (2008). Chronic prenatal depression and neonatal outcome. International Journal of Neuroscience, 118, 95103.CrossRefGoogle ScholarPubMed
Field, T., Pickens, J., Prodromidis, M., Malphurs, J., Fox, J., Bendell, D., et al. (2000). Targeting adolescent mothers with depressive symptoms for early intervention. Adolescence, 35, 381414.Google ScholarPubMed
Fortunato, C. K., Dribin, A. E., Granger, D. A., & Buss, K. A. (2008). Salivary alpha-amylase and cortisol in toddlers: Differential relations to affective behavior. Developmental Psychobiology, 50, 807818.CrossRefGoogle ScholarPubMed
Frankenhauser, M. (1983). The sympathetic–adrenal and pituitary–adrenal response to challenge: Comparison between the sexes. In Dembroski, T. M., Schmidt, T. H., & Blumchen, G. (Eds.), Biobehavioral bases for coronary heart disease (pp. 91105). Basel: Karger.Google Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016.CrossRefGoogle ScholarPubMed
Frigerio, A., Ceppi, E., Rusconi, M., Giorda, R., Raggi, M. E., & Fearon, P. (2009). The role played by the interaction between genetic factors and attachment in the stress response in infancy. Journal of Child Psychology and Psychiatry, 50, 15131522.CrossRefGoogle ScholarPubMed
Gitau, R., Cameron, A., Fisk, N. M., & Glover, V. (1998). Fetal exposure to maternal cortisol. Lancet, 352, 707708.Google Scholar
Goodman, S. H., & Gotlib, I. H. (1999). Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. Psychological Review, 106, 458490.CrossRefGoogle ScholarPubMed
Gordis, E. B., Granger, D. A., Susman, E. J., & Tricket, P. K. (2008). Salivary alpha amylase-cortisol asymmetry in maltreated youth. Hormones and Behavior, 53, 96103.CrossRefGoogle ScholarPubMed
Granger, D. A., Kivlighan, K. T., Blair, C., El-Sheikh, M., Mize, J., Lisonbee, J. A., et al. (2006). Integrating the measurement of salivary alpha-amylase into studies of child health, development, and social relationships. Journal of Personal and Social Relationships, 23, 267290.CrossRefGoogle Scholar
Gump, B. B., Reihman, J., Stewart, P., Lonky, E., Darvill, T., Granger, D. A., et al. (2009). Trajectories of maternal depressive symptoms over her child's life span: Relation to adrenocortical, cardiovascular, and emotional functioning in children. Development and Psychopathology, 21, 207225.Google Scholar
Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.CrossRefGoogle ScholarPubMed
Hart, J., Gunnar, M. R., & Cicchetti, D. (1995). Salivary cortisol in maltreated children related to symptoms of depression. Developmental Psychopathology, 8, 1126.Google Scholar
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 135.CrossRefGoogle ScholarPubMed
Hertsgaard, L., Gunnar, M., Erickson, M. F., & Nachmias, M. (1995). Adrenocortical response to the Strange Situation in infants with disorganized/disoriented attachment relationships. Child Development, 66, 11001106.CrossRefGoogle Scholar
Hessl, D., Dawson, G., Frey, K., Panagiotides, H., Self, H., Yamada, E., et al. (1998). A longitudinal study of children of depressed mothers: Psychobiological findings related to stress. In Hann, D. M., Huffman, L. D., Lederhendler, K. K., & Minecke, D. (Eds.), Advancing research on developmental plasticity: Integrating the behavioral sciences and the neurosciences of mental health (p. 256). Bethesda, MD: National Institutes of Mental Health.Google Scholar
Hill-Soderlund, A. L., Mills-Koonce, W. R., Propper, C., Calkins, S. D., Granger, D. A., Moore, G. A., et al. (2008). Parasympathetic and sympathetic responses to the Strange Situation in infants and mothers from avoidant and securely attached dyads. Developmental Psychobiology, 50, 361376.CrossRefGoogle Scholar
Huot, R. L., Brennan, P. A., Stowe, Z. N., Plotsky, P. M., & Walker, E. F. (2004). Negative affect in offspring of depressed mothers is predicted by infant cortisol levels at 6 months and maternal depression during pregnancy, but not postpartum. Annals of the New York Academy of Sciences, 1032, 234236.CrossRefGoogle Scholar
Jolley, S. N., Elmore, S., Barnard, K. E., & Carr, D. B. (2007). Dysregulation of the hypothalamic–pituitary–adrenal axis in postpartum depression. Biological Research for Nursing, 8, 210222.CrossRefGoogle ScholarPubMed
Luby, J. L., Heffelfinger, A., Mrakotsky, C., Brown, K., Hessler, M., & Spitznagel, E. (2003). Alterations in stress cortisol reactivity in depressed preschoolers relative to psychiatric and no-disorder comparison groups. Archives of General Psychiatry, 60, 12481255.CrossRefGoogle ScholarPubMed
Lundberg, U., & Frankenhauser, M. (1980). Pituitary–adrenal and sympathetic–adrenal correlates of distress and effort. Journal of Psychosomatic Research, 24, 125130.CrossRefGoogle ScholarPubMed
Maughan, A., Cicchetti, D., Toth, S. L., & Rogosch, F. A. (2007). Early-occurring maternal depression and maternal negativity in predicting young children's emotion regulation and socioemotional difficulties. Journal of Abnormal Child Psychology, 35, 687703.CrossRefGoogle ScholarPubMed
McEwen, B. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
Murray, L., & Cooper, P. J. (1997). Postpartum depression and child development. Psychological Medicine, 27, 253260.CrossRefGoogle ScholarPubMed
Nachmias, M., Gunnar, M. R., Mangelsdorf, S., Parritz, R., & Buss, K. (1996). Behavioral inhibition and stress reactivity: Moderating role of attachment security. Child Development, 67, 508522.Google Scholar
Nater, U. M., Rohleder, N., Schlotz, W., Ehlert, U., & Kirschbaum, C. (2007). Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology, 32, 392401.CrossRefGoogle ScholarPubMed
Nierop, A., Bratsikas, A., Zimmerman, R., & Ehlert, U. (2006). Are stress-induced cortisol changes during pregnancy associated with postpartum depressive symptoms? Psychosomatic Medicine, 68, 931937.CrossRefGoogle ScholarPubMed
Nigg, J. T. (2006). Temperament and developmental psychopathology. Journal of Child Psychology and Psychiatry, 47, 395422.CrossRefGoogle ScholarPubMed
O'Connor, T. G., Heron, J., & Glover, V. (2002). Antenatal anxiety predicts child behavioral/emotional problems independently of postnatal depression. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 14701477.CrossRefGoogle ScholarPubMed
O'Donnell, K., O'Connor, T. G., & Glover, V. (2009). Prenatal stress and neurodevelopment of the child: Focus on the HPA axis and role of the placenta. Developmental Neuroscience, 31, 285292.CrossRefGoogle ScholarPubMed
Oitzl, M. S., Champagne, D. L., van der Veen, R., & de Kloet, E. R. (2010). Brain development under stress: Hypotheses of glucocorticoid actions revisited. Neuroscience & Biobehavioral Reviews, 34, 853866.Google Scholar
Powers, S. I., Laurent, H. K., & Granger, D. A. (2011). Coordination of the HPA and SNS response systems in young adult couples: Associations between cortisol and alpha-amylase in response to interpersonal conflict. Manuscript submitted for publication.Google Scholar
Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Newbury Park, CA: Sage.Google Scholar
Ronsaville, D. S., Municchi, G., Laney, C., Cizza, G., Meyer, S. E., Haim, A., et al. (2006). Maternal and environmental factors influence the hypothalamic–pituitary–adrenal axis response to corticotropin-releasing hormone infusion in offspring of mothers with or without mood disorders. Development and Psychopathology, 18, 173194.Google Scholar
Rüedi-Bettschen, D., Zhang, W., Russig, H., Ferger, B., Weston, A., Pedersen, E. M., et al. (2006). Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats. European Journal of Neuroscience, 24, 28792893.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google ScholarPubMed
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus–pituitary–adrenal axis and the sympathetic–adrenal–medullary systems to repeated psychosocial stress. Psychosomatic Medicine, 65, 450460.CrossRefGoogle ScholarPubMed
Seckl, J. R. (2004). Prenatal glucocorticoids and long-term programming. European Journal of Endocrinology, 151, U49U62.CrossRefGoogle ScholarPubMed
Seckl, J. R., & Holmes, M. C. (2007). Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nature Clinical Practice Endocrinology and Metabolism, 3, 479488.Google Scholar
Seckl, J. R., & Meaney, M. J. (2006). Glucocorticoid “programming” and PTSD risk. Annuals of the New York Academy of Sciences, 1071, 351378.Google Scholar
Sethre-Hofstad, L., Stansbury, K., & Rice, M. A. (2002). Attunement of maternal and child adrenocortical response to child challenge. Psychoneuroendocrinology, 27, 731747.CrossRefGoogle ScholarPubMed
Spangler, G., & Grossman, K. E. (1993). Biobehavioral organization in securely and insecurely attached infants. Child Development, 64, 14391450.Google Scholar
Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., et al. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21, 4768.Google Scholar
Talge, N. M., Neal, C., Glover, V., & the Early Stress, Translational Research and Prevention Science Network: Fetal and Neonatal Experience on Child and Adolescent Mental Health. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48, 245261.Google Scholar
Toth, S. L., Rogosch, F. A., Sturge-Apple, M., & Cicchetti, D. (2009). Maternal depression, children's attachment security, and representational development: An organizational perspective. Child Development, 80, 192208.Google Scholar
Vallee, M., Mayo, W., Dellu, G., Le Moal, M., Simon, H., & Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. Journal of Neuroscience, 17, 26262636.Google Scholar
Weinstock, M., Matlina, E., Maor, G. I., Rosen, H., & McEwen, B. S. (1992). Prenatal stress selectively alters the reactivity of the hypothalamic–pituitary–adrenal system in the female rat. Brain Research, 595, 195200.Google Scholar
Yehuda, R., Engel, S. M., Brand, S. R., Seckl, J., Marcus, S. M., & Berkowitz, G. S. (2005). Transgenerational effects of PTSD in babies of mothers exposed to the WTC attacks during pregnancy. Journal of Clinical Endocrinology and Metabolism, 90, 41154118.CrossRefGoogle Scholar
Young, E. A., Haskett, R. F., Murphy-Weinberg, V., Watson, S. J., & Akil, H. (1991). Loss of glucocorticoid fast feedback in depression. Archives of General Psychiary, 48, 693699.CrossRefGoogle ScholarPubMed
Yim, I. S., Glynn, L. M., Dunkel-Schetter, C., Hobel, C. J., Chicz-DeMet, A., & Sandman, C. A. (2009). Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy. Archives of General Psychiatry, 66, 162169.Google Scholar