Au chapitre 5 du livre VIII de sa Physique, Aristote propose un argument en faveur de la nécessité du mouvement éternel dont le sens général semble être clair, mais dont les tournures logiques ont été à notre sens insuffisamment explorées dans le cadre de la littérature critique existante. Aristote écritFootnote 1 :
[…] ɛἰ γὰρ ὑπὸ κινουμένου κινɛῖται τὸ κι- [256b4] νούμɛνον πᾶν, ἤτοι τοῦτο ὑπάρχɛι τοῖς πράγμασιν κατὰ συμ- [256b5] βɛβηκός, ὥστɛ κινɛῖν μὲν κινούμɛνον, οὐ μέντοι διὰ τὸ κινɛῖσθαι αὐτό, ἢ οὔ, ἀλλὰ καθ’ αὑτό. πρῶτον μὲν οὖν ɛἰ κατὰ συμβɛβηκός, οὐκ ἀνάγκη κινɛῖσθαι τὸ κινοῦν. ɛἰ δὲ τοῦτο, δῆλον ὡς ἐνδέχɛταί ποτɛ μηδὲν κινɛῖσθαι τῶν ὄντων· οὐ γὰρ ἀναγκαῖον τὸ συμβɛβηκός, ἀλλ' ἐνδɛχόμɛνον μὴ ɛἶναι. ἐὰν [256b10] οὖν θῶμɛν τὸ δυνατὸν ɛἶναι, οὐδὲν ἀδύνατον συμβήσɛται, ψɛῦδος δ' ἴσως. ἀλλὰ τὸ κίνησιν μὴ ɛἶναι ἀδύνατον· δέ- δɛικται γὰρ πρότɛρον ὅτι ἀνάγκη κίνησιν ἀɛὶ ɛἶναιFootnote 2. [256b13]
En effet, si tout mû est mû par un <moteur> mû, [5] soit cela appartient aux choses par accident (de sorte que le mû meut mais pas du fait qu'il est lui-même mû), soit ce n'est pas le cas et <cela leur appartient> par soi. D'abord, donc, si c'est par accident, il n'est pas nécessaire que le moteur soit mû. Mais s'il en est ainsi, il est évident qu'il est possible qu’à un certain moment aucun des étants ne soit mû. Car ce qui est [10] accidentel n'est pas nécessaire, mais il lui est possible de ne pas être. Si donc nous posons l'existence du possible, rien d'impossible ne s'ensuivra, mais peut-être quelque chose de faux. Mais qu'il n'y ait pas de mouvement c'est impossible; on a en effet montré auparavant qu'il est nécessaire qu'il y ait toujours du mouvement (Aristote, Physique VIII, 5, 256b4-13Footnote 3).
Le présent raisonnement s'insère dans une stratégie argumentative plus générale. Au début du chapitre 5, en effet, Aristote veut nier que tout moteur soit également mû. Il offre, pour ce faire, trois arguments. Le troisième de ceux-ci s'appuie sur une disjonction préliminaire : si tout moteur est mû, alors être mû appartient au moteur soit par accident soit par soiFootnote 4. Le texte qui nous intéresse concerne la première branche de cette alternative («être mû appartient aux moteurs par accident») et veut conclure que tout moteur n'est pas mû par accident.
L'argument pose toutefois plusieurs problèmes d'interprétation.
1) Il faut clarifier d'abord ce qu'Aristote entend dans ce contexte par le mot «accident» (τὸ συμβɛβηκός, 256b10). Pense-t-il à la prédication accidentelle ou au fait que la qualification d’être «mû» puisse être un accident (c'est-à-dire, un prédicat qui tombe dans une catégorie accidentelle) pour le sujet dont il est prédiqué?
2) Quoi qu'il en soit de la signification précise de συμβɛβηκός à la ligne 256b10, Aristote en dérive que, même si l’énoncé (i) «tout moteur est mû» est vrai quand il est proféré, il est possible (ἐνδέχɛταί) qu'il soit faux à un autre moment (ποτɛ), en raison du fait que le lien établi par l’énoncé (i) entre le sujet son prédicat est κατὰ συμβɛβηκός. En d'autres termes, s'il est κατὰ συμβɛβηκός que (i) «tout moteur soit mû», alors (ii) «il est possible que tout moteur ne soit pas mû». La vérité de l’énoncé (ii) se fonde donc sur le fait que (i) exprime un lien accidentel entre le prédicat et le sujet. Mais doit-on alors penser que l'argument d'Aristote dépend du principe du plénitudeFootnote 5?
3) Dans la suite de l'argument, Aristote nous rappelle la définition du possible donnée en Premiers Analytiques A, 13, 32a18-21Footnote 6, et il observe que si l'on pose l'existence du possible (τὸ δυνατὸν ɛἶναι), alors rien d'impossible ne peut s'ensuivre. Mais à quoi l'expression τὸ δυνατὸν ɛἶναι réfère-t-elle exactement dans ce contexte? Elle renvoie, vraisemblablement, à l’énoncé (ii). Aristote pose en effet qu'il est possible que tout moteur ne soit pas mû. Cela est possible, bien que peut-être, au moins dans le contexte de l'hypothèse examinée, cela doive être considéré comme faux.
4) Aristote conclut toutefois de cette possibilité une impossibilité, à savoir que (iii) «il n'y a pas toujours de mouvement». De prime abord, le lien de cause à effet n'est pas manifeste. Pourquoi le fait qu'aucun moteur ne soit mû entraîne-t-il le fait que rien ne soit mû? Les moteurs ne pourraient-ils pas mouvoir en étant immobiles, d'autant qu'Aristote a affirmé précédemment qu'un moteur mû par accident ne meut pas du fait d’être mû? En fait, il faut voir qu'Aristote réduit à l'absurde une certaine position, à savoir que tout moteur soit mû par accident. Selon cette position même, ne pas être mû équivaut à ne pas être moteur. Par conséquent, s'il est possible qu'aucun moteur ne soit mû, alors il est possible qu'aucun moteur ne meuve. Et s'il est possible qu'aucun moteur ne meuve, il est possible que rien ne soit mû. S'il est vrai qu'il n'y a pas toujours du mouvement (iii), l’énoncé contradictoire (iv) «il y a toujours du mouvement» sera faux. Mais Aristote a déjà démontré (cf. Phys. VIII, 1, 251b23-28) qu'il y a toujours du mouvement et donc que (iv) est vrai. Il s'ensuit que (iii) est faux. Cependant, Aristote ne se contente pas de la fausseté de cet énoncé. Il s'appuie plutôt explicitement sur son impossibilité. Il affirme en effet qu’il est impossible qu'il n'y ait pas toujours du mouvement. Il faut donc clarifier la fonction de l'opérateur modal «impossible» dans ce contexte : s'agit-il d'une impossibilité logique (dépendant de la structure de l'argument) ou d'une impossibilité matérielle (dépendant des réalités examinées)?
Dans notre analyse du passage, nous répondrons aux quatre problèmes, détaillés ci-dessous.
1. Accident ou prédication accidentelle?
Le mot français que nous avons utilisé pour exprimer le sujet de l’énoncé (i), «moteur», est un nom, qui traduit le participe grec κινοῦν (256b8). Il n'est donc pas improbable qu'Aristote considère τὸ κινοῦν comme un accident, parce qu'un verbe désigne une action ou une capacité d'agir. Les actions appartiennent à une catégorie accidentelleFootnote 7 tout comme les dispositions, qu'Aristote range parmi les qualitésFootnote 8. Cependant, «moteur» n'est pas l'accident devant être considéré, car Aristote écrit que «οὐκ ἀνάγκη κινɛῖσθαι τὸ κινοῦν» («il n'est pas nécessaire que le moteur soit mû», 256b8). Le sujet de l'infinitive est le participe substantivé τὸ κινοῦν et il serait plutôt curieux que le sujet grammatical exprime le prédicat logique. Si Aristote exprime le lien entre une substance et son accident, dans l'extrait qu'on vient de citer, la seule possibilité qui nous reste consiste plutôt à considérer qu'Aristote conçoit «être mû» comme un accident du sujet «moteur»Footnote 9. Cette deuxième interprétation possède l'avantage de considérer le moteur comme le sujet logique de la prédication — ce qui est plus naturel aussi du point de vue métaphysique, parce nous éliminons la possibilité que «chose mue» puisse être le sujet d'une prédication non-accidentelle, c'est-à-dire que «chose mue» puisse se référer à une substanceFootnote 10.
En fait, en disant que tout moteur est mû par accident, Aristote établit une prédication accidentelleFootnote 11 similaire à celle présente dans l’énoncé «le cultivé est blanc», qui est vrai s'il y a une substance (e.g. Coriscus) dont il est vrai de dire qu'elle est cultivée et blancheFootnote 12. Le lecteur remarquera que la prédication accidentelle (si elle est vraie) implique la prédication de deux accidents par rapport à une substance qui est implicite dans l’énoncé qui exprime la prédication accidentelle. Par conséquent, même en disant que «tout moteur est mû» est une prédication accidentelle, et c'est en ce sens qu'il faut entendre le mot συμβɛβηκός à la ligne 256b10, une telle prédication implique tout de même l'existence d'une substance dont il est vrai de dire qu'elle est un moteur (accident de la catégorie «action») et qu'elle est mue (accident de la catégorie «passion»). Il est important de souligner que, quoi qu'il en soit de notre interprétation du συμβɛβηκός à la ligne 256b10, nous pouvons conclure que τὸ κινοῦν peut avoir la fonction d’être un accident, c'est-à-dire un prédicat qui fait partie d'une des catégories accidentelles, parce que dans les Topiques (cf. A, 102b4-9), Aristote spécifie que l'accident est une détermination qui peut être là et qui peut n’être pas là Footnote 13. Aristote oppose en ce sens l'accident à la définition, au genre et au propre (proprium) parce que ces trois derniers sont toujours prédiqués de leur sujet. Doit-on en conclure qu'il existe au moins un instant de temps dans lequel un accident ne peut pas appartenir à la substance de laquelle il est présentement prédiqué, parce qu'alternativement nous aurions un propre?
2. Application du principe de plénitude?
La question précédente évoque le principe de plénitude, qui a été souvent employé dans le contexte de la caractérisation aristotélicienne des modalitésFootnote 14. Selon ce principe, toute possibilité se réalise à un certain moment. On peut formuler d'une façon plus formelle ce principe en disant que, pour chaque proposition p, s'il est possible que p au temps tk, alors p est le cas au temps tn (n>k).
Aristote, cependant, s’écarte de l'acceptation du principe de plénitude dans les lignes que nous analysonsFootnote 15 — ce qui, par ailleurs, est en accord avec ce que nous avons soutenu à propos de Mét. Θ, 4Footnote 16. Si le principe de plénitude ne s'applique pas, en écrivant que l'accident ἐνδɛχόμɛνον μὴ ɛἶναι (256b10), Aristote peut soutenir que l'accident est toujours. Pour son argument, il est cependant suffisant d'admettre qu'il soit possible que l'accident ne soit pas. Mais quelle est la caractérisation du «possible» dans ce contexte? Aristote évite de donner des renseignements de sémantique qui pourraient inclure une référence au temps. Il se limite à une description exclusivement syntactique de l'opérateur «possible».
S'il est possible que p, alors l'hypothèse que p soit le cas peut être fausse, mais elle ne doit rien impliquer d'impossible.
3. Faux, mais possible
Par conséquent, s'il est possible que l'accident ne soit pas (c'est-à-dire s'il est possible que le moteur ne soit pas mû), l'hypothèse que le moteur ne soit pas mû peut être fausse, mais elle ne peut rien impliquer d'impossible. En effet, s'il est possible que p («le moteur n'est pas mû»), il n'est pas impossible que p. Qui plus est — et en rejetant le principe de plénitude, tel qu'il a été formulé au paragraphe précédent — s'il est vrai que
(i) «il est possible que le moteur ne soit pas mû» (◊p)
il est toujours possible que la proposition
(ii) «le moteur n'est pas mû» (p)
soit fausse, parce que la possibilité dans (i) n'implique pas la réalisation à un instant t de l’événement décrit par p.
4. Impossibilité logique ou matérielle?
En soutenant qu'il est impossible qu'il n'y ait pas de mouvement, Aristote établit une contraposition avec le texte de Physique VIII, 1, 251b23-28, où il avait conclu qu'il est nécessaire qu'il y ait toujours du mouvement. Cette conclusion présentait le «nécessaire» comme un opérateur décrivant la nécessité de la conclusion plutôt que celle du mouvement dans les choses elles-mêmes. Il s'agit donc d'un opérateur de sensu composito. Il nous semble nécessaire de citer l'extrait dans son entièreté :
τὸ γὰρ ἔσχατον τοῦ τɛλɛυταίου ληφθέντος χρόνου [251b23] ἔν τινι τῶν νῦν ἔσται (οὐδὲν γὰρ ἔστι λαβɛῖν ἐν τῷ χρόνῳ παρὰ τὸ νῦν), ὥστ' ἐπɛί ἐστιν ἀρχή τɛ καὶ τɛλɛυτὴ τὸ νῦν, [251b25] ἀνάγκη αὐτοῦ ἐπ' ἀμφότɛρα ɛἶναι ἀɛὶ χρόνον. ἀλλὰ μὴν ɛἴ γɛ χρόνον, φανɛρὸν ὅτι ἀνάγκη ɛἶναι καὶ κίνησιν, ɛἴπɛρ ὁ χρόνος πάθος τι κινήσɛως. [251b28]
En effet, l'extrémité du dernier temps saisi sera dans l'un des «maintenant» (car il est impossible de prendre quelque chose dans le temps sinon le «maintenant»), de sorte que, puisque le «maintenant» est à la fois commencement et fin, il est nécessaire qu'il y ait toujours du temps de part et d'autre de lui. Mais s'il y a du temps, il est manifestement nécessaire qu'il y ait aussi du mouvement, puisque le temps est une certaine affection du mouvement (Aristote, Physique VIII, 1, 251b23-28)Footnote 17.
La lecture la plus naturelle de ce passage — qui a inspiré probablement la plupart des traducteursFootnote 18 — est d'entendre le ἀνάγκη [ἐστι] de la ligne 251b27 comme la proposition principale qui introduit une infinitive (ɛἶναι καὶ κίνησιν, lege : <ἀɛὶ> ɛἶναι καὶ κίνησιν). Cette construction grammaticale semble supporter l'idée que le ἀνάγκη exprime la nécessité de la consequentia, c'est-à-dire de l'entière proposition hypothétique :
Thèse I : Il est nécessaire que (si le temps est éternel, alors le mouvement soit aussi éternel).
Cependant, si cette interprétation est correcte, Aristote se tromperait, en Phys. VIII, 5, en disant avoir démontré précédemment (πρότɛρον) qu’«il est nécessaire que le mouvement soit toujours» (ἀνάγκη κίνησιν ἀɛὶ ɛἶναι, 256b13), parce qu'on ne peut dériver de la thèse I que le conséquent («le mouvement est éternel») soit nécessaire.
Il nous semble que cette difficulté n'a pas été observée par les commentateursFootnote 19. À notre avis, la solution consiste à attribuer à Aristote l'acceptation de l'axiome K (c'est-à-dire, le principe de logique modale selon lequel l'opérateur de nécessité se distribue par rapport à l'implication matérielle) et l'idée que l'antécédent de la thèse I («le temps est éternel») soit aussi nécessaire. Si ces deux thèses peuvent être raisonnablement attribuées à Aristote, alors on peut aisément déduire qu'il est nécessaire (necessitate consequentis) que le mouvement soit éternel — ce qui rendrait logiquement valide l'argument de Phys. VIII, 5, 256b8-13.
a) Première observation : l'attribution de l'axiome K à Aristote
L'axiome K est l'axiome qui caractérise les systèmes de logique modale «normaux»Footnote 20. Il est nommé d'après de nom de famille de Saul Kripke, qui a contribué au développement des sémantiques aux mondes possibles pour les logiques modales. L'axiome prévoit que l'opérateur de nécessité se distribue par rapport à l'implication matérielle :
Même si certains philosophes de la tradition aristotélicienne auraient probablement rejeté l'axiome KFootnote 21, il nous semble raisonnable de l'attribuer à Aristote.
Le texte qui nous semble rendre légitime cette attribution est un extrait particulièrement complexe des Premiers Analytiques. Dans le chapitre 15 du premier livre des Analytiques Premiers, Aristote discute les syllogismes modaux mixtes avec une prémisse possible, une prémisse catégorique (c'est-à-dire sans opérateur modal) et une conclusion possible. Si la majeure est possible et la mineure est catégorique, le syllogisme est «parfait»; si la mineure est possible et la majeure est catégorique, le syllogisme est «imparfait» (cf. An. Pr. A, 15, 33b25-33).
La preuve de la validité du Barbara XQ-Q (où «X» indique une proposition catégorique et «Q» une proposition possible) se fait par une reductio ad absurdum particulière, dans le contexte de laquelle Aristote fait une observation apparemment marginale, mais qui témoigne selon nous de son acceptation de l'axiome K dans sa logique. Voici le texte d'Aristote :
ἔτι τὸ ὄντος τοῦ Α τὸ Β ɛἶναι, οὐχ ὡς ἑνός τινος ὄντος τοῦ Α τὸ [34a16] Β ἔσται δɛῖ ὑπολαβɛῖν· οὐ γὰρ ἔστιν οὐδὲν ἐξ ἀνάγκης ἑνός τινος ὄντος, ἀλλὰ δυοῖν ἐλαχίστοιν, οἷον ὅταν αἱ προτάσɛις οὕτως ἔχωσιν ὡς ἐλέχθη κατὰ τὸν συλλογισμόν. ɛἰ γὰρ τὸ Γ κατὰ τοῦ Δ, τὸ δὲ Δ κατὰ τοῦ Z, καὶ τὸ Γ κατὰ τοῦ Z [34a20] ἐξ ἀνάγκης· καὶ ɛἰ δυνατὸν ἑκάτɛρον, καὶ τὸ συμπέρασμα δυνατόν. ὥσπɛρ οὖν ɛἴ τις θɛίη τὸ μὲν Α τὰς προτάσɛις, τὸ δὲ Β τὸ συμπέρασμα, συμβαίνοι ἂν οὐ μόνον ἀναγκαίου τοῦ Α ὄντος ἅμα καὶ τὸ Β ɛἶναι ἀναγκαῖον, ἀλλὰ καὶ δυνατοῦ δυνατόν. [34a24]
Par ailleurs il faut comprendre que «lorsque A est le cas, B est» signifie, non pas que si un certain fait unique A est le cas, alors B sera (car rien n'est par nécessité lorsqu'un fait unique est le cas), mais lorsque deux faits au moins sont : ainsi lorsque deux prémisses sont disposées selon les règles de la déduction comme l'on a dit. Si en effet [34a20] C s'applique à D et D à F, nécessairement C aussi s'appliquera à F : et si chacun des deux est possible, alors la conclusion aussi sera possible — de même, donc, que si on pose que les prémisses sont A et la conclusion B, il s'ensuivra non seulement que, A étant nécessaire, B sera nécessaire, mais que s'il est possible B sera possible (Aristote, Premiers Analytiques A, 15, 34a16-24Footnote 22).
Aux lignes 34a23-24, Aristote semble soutenir les thèses suivantes :
(i) (□A → □B)
(ii) (◊A → ◊B)
Les deux thèses (i) et (ii) sont les conséquences d'une présupposition, parce qu'elles sont introduites par la formule συμβαίνοι ἂν. Dans la phrase conditionnelle d'AristoteFootnote 23, la présupposition logique, qui dans le langage formel est exprimée dans l'antécédent de l'implication, est exprimée dans la protase, c'est-à-dire que (i) et (ii) sont le cas si «A» désigne les prémisses et «B» la conclusion d'un syllogisme. D'après sa définition (cf. An. Pr. A, 1, 24b18-20 : «συλλογισμὸς δέ ἐστι λόγος ἐν ᾧ τɛθέντων τινῶν ἕτɛρόν τι τῶν κɛιμένων ἐξ ἀνάγκης συμβαίνɛι τῷ ταῦτα ɛἶναι»), le syllogisme aristotélicien établit un lien nécessaire entre les prémisses et la conclusionFootnote 24, au point qu'il a été présenté aussi comme une «consequentia» nécessaireFootnote 25. Qui plus est, Aristote, dans le passage sous examen, présente un Barbara XX-X, c'est-à-dire un Barbara avec prémisses et conclusions catégoriques («ɛἰ γὰρ τὸ Γ κατὰ τοῦ Δ, τὸ δὲ Δ κατὰ τοῦ Z, καὶ τὸ Γ κατὰ τοῦ Z ἐξ ἀνάγκης»), et souligne la nécessité de la conséquence avec l'expression (ἐξ ἀνάγκης)Footnote 26. En conclusion, Aristote présente, comme antécédent de la phrase conditionnelle dont (i) et (ii) sont les conséquences, la thèse suivante :
(i) □(A→B)
où «A» indique les deux prémisses et «B» la conclusionFootnote 27. De ce que l'on vient de dire (iii, i), nous pouvons conclure que dans le passage sous analyse, Aristote soutient que
(ii) □(A→B) → (□A→□B)
ce qui correspond à l'axiome K.
b) Deuxième observation : il est nécessaire que le temps soit éternel
L'antécédent de la thèse I est la conclusion d'un argument qui a comme point de départ la définition de la notion d'instant. Selon Aristote, il est nécessaire que le temps soit éternel, parce que le temps se constitue d'instants et parce que l'instant est par définition un intermédiaire entre un temps passé et un temps futur. Si le temps est la somme du passé, du présent et du futur, c'est-à-dire la somme de tous les instants, et si chaque instant est par définition un point intermédiaire, il ne peut y avoir un début ni une fin au temps. Le temps sera éternel. On pourrait imaginer que l'argument soit un Barbara LX-L (où «L» indique une proposition nécessaire et «X» une proposition catégorique)Footnote 28 :
1. Tous les instants sont nécessairement des intermédiaires (prémisse nécessaire)
2. Le temps inclut tous les instants
3. Le temps inclut nécessairement tous les intermédiaires (conclusion nécessaire)
Mais les intermédiaires sont en nombre infini, donc
Corollaire : le temps est nécessairement infini, c'est-à-dire nécessairement éternel.
En effet, si le temps inclut nécessairement tous les intermédiaires, le temps est infini, c'est-à-dire éternel. Même si l'on pourrait penser que la prémisse mineure du premier syllogisme (2) n'est pas nécessaire, parce qu'elle ne nous donne pas la définition de temps (qui serait une prémisse nécessaire) — et il n'est pas clair qu'elle donne un proprium —, il est suffisant qu'on concède que la majeure soit nécessaire afin que la conclusion soit aussi nécessaire (cf. Arist., Premiers Analytiques A, 9). En conclusion, Aristote soutient que le temps est nécessairement éternel (necessitate consequentis).
Conclusion
Dans cette brève note exégétique, nous avons montré qu'Aristote soutient, en Physique VIII, 5, 256b8-13, qu'il est impossible qu'il n'y ait pas de mouvement, parce qu'il a démontré auparavant qu'il est nécessaire qu'il y ait du mouvementFootnote 29. Cependant, nous avons relevé qu'en Physique VIII, 1, 251b23-28, il n'a pas démontré qu'il est nécessaire du point de vue métaphysique qu'il y ait toujours du mouvement. La nécessité dont il est question en Physique VIII, 1, 251b23-28 est plutôt la nécessité logique de la conséquence de l'argument dans son entièreté. Selon Aristote, il est donc nécessaire, de sensu composito ou necessitate consequentiae, que, si le temps est éternel, le mouvement le soit aussi. En Physique VIII, 5, 256b8-13, cependant, Aristote n’évoque pas la nécessité de la conséquence quand il soutient que le mouvement existe nécessairement — il introduit plutôt la nécessité du conséquent (ou nécessité de sensu diviso). Se trompe-t-il en renvoyant à un endroit précédent (δέδɛικται γὰρ πρότɛρον, 256b12-13) pour la preuve du fait que le mouvement existe nécessairement (necessitate consequentis)? Il nous semble que non. Bien sûr, la brachylogie aristotélicienne est toujours présente, mais nous croyons qu'Aristote possède tous les instruments pour dériver la necessitas consequentis de la necessitas consequentiae dans le cas que nous analysons. En premier lieu, nous avons démontré qu'Aristote accepte l'axiome K. Ensuite, nous avons montré qu'en Physique VIII, 1, Aristote soutient la nécessité de l'existence éternelle du temps. Il en découle que, au même chapitre, le Stagirite a toutes les pièces à sa disposition pour inférer que le mouvement existe nécessairement selon la nécessité du conséquent. Il a simplement omis de dériver explicitement la conclusion, ce qui est en accord avec son style d’écriture habituel.
Remerciements
Nous remercions Sandrine Roux pour sa relecture de notre article et ses commentaires et les relecteurs anonymes de la revue pour leurs observations.