Published online by Cambridge University Press: 05 May 2010
Cet Article souligne quelques distinctions fondamentales concernant le système traditionnel des propositions catégoriques, distinctions sans lesquelles il nous semble impossible de bien saisir la structure de ce système, et distinctions dont la négligence vicie certaines études, en particulier celles déjà anciennes de Miller (1938) et de Reichenbach (1952), et celle toute récente de Grosjean (1972), et en général la plupart de celles qui depuis le début du siècle ont traité du problème de la subalternation. II ne faut pas confondre, en effet, la construction ou la définition des propositions du système, les transformations qui, appliquées à l'une d'entre elles, permettent d'en obtenir une autre distincte, les oppositions que ces propositions entretiennent entre elles, et enfin les lois d'inférence que l'on peut formuler à leur propos par le moyen d'opérateurs propositionnels les reliant tautologiquement deux à deux. Nous développons done séparéent chacun de ces quatre aspects du syst`me, et nous apportons également (d'où le titre de 1'article) une solution nouvelle au problème de sa représentation géométrique, problème auquel Reichenbach et Grosjean accordant une certaine importance, et que Blanché (1966) a aussi abordé en partie.