Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T02:22:58.196Z Has data issue: false hasContentIssue false

James Croll and geological archives: testing astronomical theories of ice ages

Published online by Cambridge University Press:  10 May 2021

Polychronis C. TZEDAKIS*
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, London, UK.
Eric W. WOLFF
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge, UK.
*
*Corresponding author. Email: p.c.tzedakis@ucl.ac.uk

Abstract

James Croll's Physical Theory of Secular Changes of Climate emerged during an age of revolution in geology that included the rise of the glacial theory and the search for its underlying causes. According to Croll, periods of high eccentricity are associated with the persistence of long glacial epochs, within which glaciations occur in alternate hemispheres when winter is at aphelion every ~11,000 years; however, astronomical forcing is only able to produce glaciation by means of physical agencies (climate feedbacks) that amplify the small effects of varying seasonal irradiation. Croll understood the importance of interglacial deposits because they provided evidence for the occurrence of multiple glaciations within his long glacial epochs. He was aware of the limitations of the terrestrial record and suggested that deep-sea sediments would contain a continuous succession of glacial-interglacial cycles. Contrary to a widespread view, however, Croll was not envisaging the advent of palaeoceanographic exploration avant la lettre, but instead was drawing attention to the inadequacy of the land record as a testbed of his astronomical theory. Yet, the marine record did eventually deliver a test of astronomical theories almost exactly 100 years after the publication of his 1875 book Climate and Time in their Geological Relations. Here, we provide an historical account of the technological and scientific developments that led to this and a summary of insights on astronomically paced climate changes from marine, terrestrial and ice core records. We finally assess Croll's ideas in the context of our current understanding of the theory of ice ages.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K. & Blatter, H. 2013. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–3.CrossRefGoogle ScholarPubMed
Adhémar, J. 1842. Révolutions de la Mer, Déluges Périodiques. Paris: Carilian-Goeury et V. Dalmont.Google Scholar
Agassiz, L. 1838. Upon glaciers, moraines, and erratic blocks. Address delivered at the opening of the Helvetic Society at Neuchâtel, 24 1837 by its President M. L. Agassiz. The Edinburgh New Philosophical Journal 24, 364–83.Google Scholar
An, Z. S., Clemens, S. C., Shen, J., Qiang, X. K., Jin, Z. D., Sun, Y. B., Prell, W. L., Luo, J. J., Wang, S. M., Xu, H., Cai, Y. J., Zhou, W. J., Liu, X. D., Liu, W. G., Shi, Z. G., Yan, L. B., Xiao, X. Y, Chang, H., Wu, F, Ai, L. & Lu, F. Y. 2011. Glacial-Interglacial Indian summer monsoon dynamics. Science 333, 719–23.Google ScholarPubMed
Arrhenius, G. 1952. Sediment cores from the east Pacific. Reports of the Swedish Deep-Sea expedition 1947–1948, v. 5, fasc. 1.Google Scholar
Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41, 237–76.CrossRefGoogle Scholar
Barker, S., Knorr, G., Edwards, L., Parrenin, F., Putnam, A.E., Skinner, L. C., Wolff, E. & Ziegler, M. 2011. 800,000 Years of abrupt climate variability. Science 334, 347–51.CrossRefGoogle ScholarPubMed
Berger, A., Li, X. S. & Loutre, M. F. 1999. Modelling northern hemisphere ice-volume over the last 3 Ma. Quaternary Science Reviews 18, 111.CrossRefGoogle Scholar
Berger, A. & Yin, Q. 2021. Orbital forcing (Astronomical Theory of Paleoclimates). In Alderton, A. & Elias, S. A. (eds) Encyclopedia of geology, 2nd edn, 435–43. London: Academic Press.CrossRefGoogle Scholar
Birchfield, G. E., Weertman, J. & Lunde, A. T. 1981. A paleoclimate model of northern hemisphere ice sheets. Quaternary Research 15, 126–42.CrossRefGoogle Scholar
Broecker, W. D., Thurber, D. L., Goddard, J., Ku, T.-L. & Matthews, R. K. 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep-Sea sediments. Science 159, 297300.CrossRefGoogle ScholarPubMed
Brückner, E., Köppen, W. & Wegener, A. 1925. Über die Klimate der geologischen Vorzeit. Zeitschrift für Gletscherkunde, Vol. 14.Google Scholar
Buckland, W. 1823. Reliquiae diluvianae; or, observations on the organic remains contained in caves, fissures, and diluvial gravel, and on geological phenomena, attesting the action of an universal deluge. London: John Murray.Google Scholar
Challenger Expedition. 1880–1895. Report of the scientific results of the voyage of H.M.S. Challenger during the years 1873–76. London: Her Majesty's Stationery Office.Google Scholar
Chamberlin, T. C. 1897. A group of hypotheses bearing on climatic changes. Journal of Geology 5, 653–83.CrossRefGoogle Scholar
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S. T., Kelly, M., Kathayat, G., Wang, X. F., Li, X. L., Kong, X. G., Wang, Y. J., Ning, Y. F. & Zhang, H. W. 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–6.CrossRefGoogle ScholarPubMed
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., Mix, A. C., Pisias, N. G. & Roy, M. 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews 25, 3150–84.CrossRefGoogle Scholar
Croll, J. 1864. On the physical cause of the change of climate during geological epochs, and The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 28, 121–37.CrossRefGoogle Scholar
Croll, J. 1867. On the change in the obliquity of the ecliptic, its influence on the climate of the polar regions and on the level of the sea. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33, 426–45.CrossRefGoogle Scholar
Croll, J. 1868. On geological time, and the probable date of the glacial and the upper Miocene period. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 36, 362–86.CrossRefGoogle Scholar
Croll, J. 1869. On two river channels buried under drift, belonging to a period when the land stood several hundred feet higher than at present. Transactions Edinburgh Geological Society 1, 330–45.CrossRefGoogle Scholar
Croll, J. 1875. Climate and time in their geological relations. London: Daldy, Isbister, & Co.Google Scholar
Croll, J. 1884. Examination of Mr. Alfred R. Wallace's Modification of the Physical Theory of Secular Changes of Climate. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 81111.CrossRefGoogle Scholar
Cuvier, G. 1812. Discours sur les révolutions de la surface du Globe et sur les changements qu'elles ont produits dans le règne animal. In Recherches sur les ossemens fossils de quadrupèdes, ou l'on rétablit les caractères de plusieurs espèces d'animaux que les révolutions du globe paroissent avoir détruites. 4 vols, 301 p. Paris: Deterville.CrossRefGoogle Scholar
Dana, J. D. 1896. Manual of geology, 4th edn. New York: American Book Co.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–68.CrossRefGoogle Scholar
de Charpentier, J. 1841. Essai sur les Glaciers et sur le terrain erratique du bassin du Rhône. Lausanne : M. Ducloux, 363 p.Google Scholar
de Saussure, H.-B. 1779–1796. Voyages dans les Alpes, précédés d'un essai sur l'histoire naturelle des environs de Genève. 4 volumes Neuchâtel: Samuel FaucheCrossRefGoogle Scholar
Delmas, R. J., Ascencio, J.-M. & Legrand, M. 1980. Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature 284, 155–7.CrossRefGoogle Scholar
deMenocal, P. B. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth and Planetary Science Letters 220, 324.CrossRefGoogle Scholar
Ding, Z. L., Derbyshire, E., Yang, S. L., Yu, Z. W., Xiong, S. F. & Liu, T. S. 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography 17, 1033.CrossRefGoogle Scholar
Dome Fuji Ice Core Project Members: Kawamura, K., Abe-Ouchi, A., Motoyama, H., Ageta, Y., Aoki, S., Azuma, N., Fujii, Y., Fujita, K., Fujita, S., Fukui, K., Furukawa, T., Furusaki, A., Goto-Azuma, K., Greve, R., Hirabayashi, M., Hondoh, T., Hori, A., Horikawa, S., Horiuchi, K., Igarashi, M., Iizuka, Y., Kameda, T., Kanda, H., Kohno, M., Kuramoto, T., Matsushi, Y., Miyahara, M., Miyake, T., Miyamoto, A., Nagashima, Y., Nakayama, Y., Nakazawa, T., Nakazawa, F., Nishio, F., Obinata, I., Ohgaito, R., Oka, A., Okuno, J., Okuyama, J., Oyabu, I., Parrenin, F., Pattyn, F., Saito, F., Saito, T., Saito, T., Sakurai, T., Sasa, K., Seddik, H., Shibata, Y., Shinbori, K., Suzuki, K., Suzuki, T., Takahashi, A., Takahashi, K., Takahashi, S., Takata, M., Tanaka, Y., Uemura, R., Watanabe, G., Watanabe, O., Yamasaki, T., Yokoyama, K., Yoshimori, M. & Yoshimoto, T. 2017. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Science Advances 3, 10.1126/sciadv.1600446.Google ScholarPubMed
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D. & Piotrowski, A. M. 2012. Evolution of ocean temperature and ice-volume through the Mid-Pleistocene climate transition. Science (New York, N.Y.) 337, 704–9.CrossRefGoogle ScholarPubMed
Emiliani, C. 1972. Quaternary paleotemperatures and the duration of the high-temperature intervals. Science 178, 398401.CrossRefGoogle ScholarPubMed
Emiliani, C. & Shackleton, N. J. 1974. The Brunhes Epoch: isotopic paleotemperatures and geochronology. Science 183, 511–4.CrossRefGoogle ScholarPubMed
Emiliani, C. 1955. Pleistocene temperatures, Journal of Geology 63, 538–78.CrossRefGoogle Scholar
EPICA community members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–8.CrossRefGoogle Scholar
Ericson, D. B., Broecker, W. S., Kulp, J. L. & Wollin, G. 1956. Late-Pleistocene climate and deep-Sea sediments. Science 124, 385–9.CrossRefGoogle Scholar
Ericson, D. B. & Wollin, G. 1956. Micropaleontological and isotopic determinations of Pleistocene climates. Micropaleontology 2, 257–70.CrossRefGoogle Scholar
Esmark, J. 1827. Remarks tending to explain the geological history of the earth. The Edinburgh New Philosophical Journal 2, 107–21.Google Scholar
Francke, A., Wennrich, V., Sauerbrey, M., Juschus, O., Melles, M. & Brigham-Grette, J. 2013. Multivariate statistic and time series analyses of grain-size data in quaternary sediments of Lake El'gygytgyn, NE Russia. Climate of the Past 9, 2459–70.CrossRefGoogle Scholar
Ganopolski, A. & Calov, R. 2011. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Climate of the Past 7, 1415–25.CrossRefGoogle Scholar
Geikie, A. 1863. On the phenomena of the glacial drift of Scotland. Glasgow: John Gray.Google Scholar
Geikie, J. 1874. The great ice age – and its relation to the antiquity of man. London: W. Isbister.Google Scholar
Gow, A. J., Ueda, H. T. & Garfield, D. E. 1968. Antarctic Ice sheet: preliminary results of first core hole to bedrock. Science 161, 1011.CrossRefGoogle Scholar
Grinsted, A., Moore, J. C. & Jevrejeva, S. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11, 561–6.CrossRefGoogle Scholar
Guo, Z., Biscaye, P., Wei, L., Chen, X., Peng, S. & Liu, T. 2000. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophyical. Research. Letters 27, 1751–4.CrossRefGoogle Scholar
Hansen, B. & Langway, C. C. 1966. Deep core drilling in Ice and core analysis at camp century, Greenland, 1961–1966. Antarctic Journal of the United States 1, 207–8.Google Scholar
Hays, J. D., Imbrie, I. & Shackleton, N. J. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121–31.CrossRefGoogle ScholarPubMed
Heer, O. 1865. Die Urwelt der Schweiz. Zürich, Schulthess.Google Scholar
Herschel, J. F. W. 1832. On the astronomical causes which may influence geological phenomena. Herschel Transactions of the Geological Society of London S2, 293–9.CrossRefGoogle Scholar
Hilgen, F. J., Hinnov, L. A., Abdul Aziz, H., Abels, H. A., Batenburg, S., Bosmans, J. H. C., de Boer, B., Hüsing, S. K., Kuiper, K. F., Lourens, L. J., Rivera, T., Tuenter, E., Van de Wal, R. S. W., Wotzlaw, J.-F. & Zeeden, C. 2015. Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. In Smith, D. G., Bailey, R. J., Burgess, P.M. & Fraser, A. J. (eds) Strata and time: probing the gaps in our understanding. London: Geological Society. Special Publications 404, 157–97.Google Scholar
Hooghiemstra, H. 1984. Vegetational and climatic history of the high plain of Bogotá, Colombia. Dissertationes Botanicae 79, 368 p. Vaduz: J. Cramer.Google Scholar
Hooghiemstra, H., Melice, J.L., Berger, A. & Shackleton, N.J., 1993. Frequency spectra and palaeoclimatic variability of the high-resolution 30–1450 ka Funza-1 pollen record (Eastern Cordillera, Colombia). Quaternary Science Reviews 12, 141–56.CrossRefGoogle Scholar
Huybers, P. 2006. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–11.CrossRefGoogle ScholarPubMed
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. & Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In Berger, A. Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and climate, part 1, 269305. NATO ASI Series. Series C: Mathematical and Physical Sciences vol. 126. Dordrecht: D. Reidel Publishing.Google Scholar
Imbrie, J. & Imbrie, K. P. 1979. Ice ages, solving the mystery. London: Macmillan.CrossRefGoogle Scholar
Jouzel, J. 2013. A brief history of ice core science over the last 50 yr. Climate of the Past 9, 2525–47.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schwander, J., Spahni, R., Souchez, R., Selmo, E., Schilt, A., Steffensen, J. P., Stenni, B., Stauffer, B., Stocker, T., Tison, J.-L., Werner, M. & Wolff, E. W. 2007. Orbital and millennial Antarctic climate variability over the last 800 000 years. Science 317, 793–6.CrossRefGoogle Scholar
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Azuma, K., Fujii, Y. & Watanabe, O. 2007. Northern hemisphere forcing of climatic cycles over the past 360,000 years implied by accurately dated Antarctic ice cores. Nature 448, 912–6.CrossRefGoogle Scholar
Kroon, D., Alexander, I., Little, M., Lourens, L. J., Matthewson, A., Robertson, A. H. F. & Sakamoto, T. 1998. Oxygen isotope and sapropel stratigraphy in the eastern Mediterranean during the last 3.2 million years. In Robertson, A. H. F., Emeis, K.-C., Richter, C., Camerlanghi, A. (eds) Proceedings of the ocean drilling program, Scientific Results 160, 181–90. College Station (TX): Ocean Drilling Program.Google Scholar
Kukla, G. J. 1977. Pleistocene land—sea correlations. I. Europe. Earth-Science Reviews 13, 307–74.CrossRefGoogle Scholar
Larrasoaña, J. C., Roberts, A. P., Rohling, E. J., Winklhofer, M. & Wehausen, R. 2003. Three million years of monsoon variability over the northern Sahara. Climate Dynamics 21, 689–98.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M. & Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261–85.CrossRefGoogle Scholar
Liautaud, P. R., Hodell, D. A. & Huybers, P. J. 2020. Detection of significant precession variability in early Pleistocene cycles. Earth and Planetary Science Letters 536, 116137.CrossRefGoogle Scholar
Lisiecki, L. E. & Raymo, M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. I., Korotkevich, Y. S. & Kotlyakov, V. M. 1985. A 150,000-year climatic record from Antarctic ice. Nature 316, 591–5CrossRefGoogle Scholar
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J. M., Raynaud, D., Stocker, T. F. & Chappellaz, J. 2008. Orbital and millennial-scale features of atmospheric CH4 over the last 800,000 years. Nature 453, 383–6.CrossRefGoogle Scholar
Lourens, L. J., Antonarakou, A., Hilgen, F. J., Van Hoof, A. A. M., Vergnaud-Grazzini, C. & Zachariasse, W. J. 1996. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391413.CrossRefGoogle Scholar
Lyell, C. 1830–1832. Principles of geology, 1st edn. London: Murray.Google Scholar
Lyell, C. 1840. On the boulder formation, or drift and associated freshwater deposits composing the mud-cliffs of Eastern Norfolk. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 16, 345–80.Google Scholar
Lyell, C. 1875. Principles of geology, 12th edn. London: Murray.Google Scholar
MacAyeal, D. R. 1979. A catastrophe model of the paleoclimate. Journal of Glaciology 24, 245–57.CrossRefGoogle Scholar
Magri, D. & Tzedakis, P. C. 2000. Orbital signatures and long-term vegetation patterns in the Mediterranean. Quaternary International 73/74, 6978.CrossRefGoogle Scholar
Margari, V., Skinner, L. C., Hodell, D. A., Martrat, B., Toucanne, S., Grimalt, J. O., Gibbard, P. L., Lunkka, J. P. & Tzedakis, P. C. 2014. Land-ocean changes on orbital and millennial timescales and the penultimate glaciation. Geology 42,183–6.CrossRefGoogle Scholar
Mesolella, K. J., Matthews, R. K., Broecker, W. S. & Thurber, D. L. 1969. The astronomical theory of climatic change: Barbados data. Journal of Geology, 77, 250–74.CrossRefGoogle Scholar
Milankovitch, M. 1920. Théorie Mathématique des Phénomènes Thermiques Produits par la Radiation Solaire. Académie Yougoslave des Sciences et des Arts de Zagreb. Paris: Gauthier Villars.Google Scholar
Milankovitch, M. 1930. Mathematische Klimalehere und Astronomische Theorie der Klimaschwankungen. In Köppen, W. & Geiger, R. (eds) Köppen Geigersches Handbuch der Klimatologie, Band I Teil A. Berlin: Borntraeger.Google Scholar
Milankovitch, M. 1941. Kanon der Erdbastrahlung und seine Anwendung auf des Eiszeitenproblem. Special Publication 132, Section of Mathematical and Natural Sciences, Vol. 33. Belgrade: Royal Serbian Academy of Sciences.Google Scholar
Morlot, A. 1855. The post-tertiary and quaternary formations of Switzerland. Edinburgh New Philosophical Journal ii New Series, 1429.Google Scholar
Murphy, J. J. 1869. On the nature and cause of the glacial climate. Quarterly Journal of the Geological Society 25, 350–6.CrossRefGoogle Scholar
NEEM Community Members. 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–94.CrossRefGoogle Scholar
Paillard, D. 1998. The timing of Pleistocene glaciations from a simple multiple- state climate model. Nature 391, 378–81.CrossRefGoogle Scholar
Paillard, D. 2001. Glacial cycles: toward a new paradigm. Reviews of Geophysics 39, 325–46.CrossRefGoogle Scholar
Paillard, D. 2015. Quaternary glaciations: from observations to theories. Quaternary Science Reviews 107, 1124.CrossRefGoogle Scholar
Paillard, D. & Parrenin, F. 2004. The Antarctic ice-sheet and the triggering of deglaciations. Earth and Planetary Science. Letters 227, 263–71.CrossRefGoogle Scholar
Past Interglacial Working Group of PAGES. 2016. Interglacials of the last 800,000 years. Reviews of Geophysics 54, 162219.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. & Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–36.CrossRefGoogle Scholar
Pettersson, H. 1948. The Swedish deep-sea expedition. Pacific Science 2, 231–8.Google Scholar
Poisson, S. D. 1835. Théorie Mathématique de la Chaleur. Paris: Bachelier Imprimeur-Libraire.Google Scholar
Prokopenko, A. A., Hinnov, L. A., Williams, D. F. & Kuzminc, M. I. 2006. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews 25, 3431–57.CrossRefGoogle Scholar
Raisbeck, G. M., Yiou, F., Cattani, O. & Jouzel, J. 2006. 10Be Evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 444, 82–4.CrossRefGoogle ScholarPubMed
Raymo, M. E. 1997. The timing of major climate terminations. Paleoceanography 12, 577–85.CrossRefGoogle Scholar
Raymo, M., Lisiecki, L. & Nisancioglu, K. 2006. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313, 492–5.CrossRefGoogle ScholarPubMed
Raymo, M. E. & Nisancioglu, K. 2003. The 41 kyr world: Milankovitch's other unsolved mystery. Paleoceanography 18, PA2011.CrossRefGoogle Scholar
Rohling, E. J., Marino, G. & Grant, K. M. 2015. Mediterranean Climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews 143, 6297.CrossRefGoogle Scholar
Rossignol-Strick, M., Nesteroff, W., Olive, P. & Vergnaud-Grazzini, C. 1982. After the deluge, Mediterranean stagnation and sapropel formation. Nature 295, 105–10.CrossRefGoogle Scholar
Ruddiman, W. F., Raymo, M. & McIntyre, A. 1986. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth and Planetary Science Letters 80, 117–29.CrossRefGoogle Scholar
Rudwick, M. 2005. Bursting the limits of time. London: The University of Chicago Press Ltd.CrossRefGoogle Scholar
Schimper, K. F. 1837. Über die Eiszeit. Actes de la Société helvétique des sciences naturelles 22e Session, Neuchâtel, 38–51.Google Scholar
Schott, W. 1935. Die Foraminiferen in dem aequatorialen Teil des Atlantischen Ozeans. Deutsch. Atlant. Exped. “Meteor” 1925–1927. Wissenschaftliche Ergebnisse 3, 43134.Google Scholar
Shackleton, N. J. 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 15–7.CrossRefGoogle Scholar
Shackleton, N. J. 1969. The last interglacial in the marine and terrestrial records. Proceedings of the Royal Society B 174, 135–54.Google Scholar
Shackleton, N. J. 1995. New data on the evolution of Pliocene climatic variability. In Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H. (eds) Paleoclimate and evolution, 242–8. New Haven: Yale University Press.Google Scholar
Shackleton, N. J., Berger, A. & Peltier, W. R. 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of The Royal Society of Edinburgh: Earth Sciences 81, 251–61.CrossRefGoogle Scholar
Shackleton, N. J., Hall, M. A. & Pate, D. 1995. Pliocene stable isotopic stratigraphy of Site 846. In Pisias, N. G., Mayer, L. A., Janecek, T. R. & van Andel, T. H. (eds) Proceedings of the ocean drilling program, Scientific Results 138, 337–55. College Station (TX): Ocean Drilling Program.Google Scholar
Shackleton, N. J., Sánchez Goñi, M. F., Pailler, D. & Lancelot, Y. 2003. Marine isotope substage 5e and the Eemian interglacial. Global and Planetary Change 757, 105.Google Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research 3, 3955.CrossRefGoogle Scholar
Torres, V., Hooghiemstra, H., Lourens, L. & Tzedakis, P. C. 2013. Astronomical tuning of long pollen records reveals the dynamic history of montane biomes and lake levels in the tropical high Andes during the quaternary. Quaternary Science Reviews 63, 5972.CrossRefGoogle Scholar
Tyndall, J. 1861. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption and conduction. Philosophical Transactions of the Royal Society 151, 16.Google Scholar
Tzedakis, P. C., Andrieu, V., de Beaulieu, J.-L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N. J. & Wijmstra, T. A. 1997. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters 150, 171–6.CrossRefGoogle Scholar
Tzedakis, P. C., Roucoux, K. H., de Abreu, L. & Shackleton, N. J. 2004. The duration of forest stages in Southern Europe and interglacial climate variability. Science 306, 2231–5.CrossRefGoogle ScholarPubMed
Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. 2006. The last 1.35 million years at Tenaghi Philippon, revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25, 3416–30.Google Scholar
Tzedakis, P. C., Crucifix, M., Mitsui, T. & Wolff, E. W. 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427–32.CrossRefGoogle ScholarPubMed
Urey, H. C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society 1947, 562–81.CrossRefGoogle Scholar
Van der Hammen, T. 1974. The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1, 326.CrossRefGoogle Scholar
Van der Hammen, T. & González, E. 1960. Upper Pleistocene and Holocene climate and vegetation of the Sabana de Bogotá. Leidse Geologische Mededelingen 25, 261315.Google Scholar
van der Wiel, A. M. & Wijmstra, T. A. 1987a. Palynology of the lower part (78–120 m) of the core Tenaghi Philippon II, Middle Pleistocene of Macedonia, Greece. Review of Palaeobotany and Palynology 52, 7388.CrossRefGoogle Scholar
van der Wiel, A. M. & Wijmstra, T. A. 1987b. Palynology of 112.8–197.8 m interval of the core Tenaghi Philippon III, Middle Pleistocene of Macedonia. Review of Palaeobotany and Palynology 52, 89117.CrossRefGoogle Scholar
Venetz, I. 1833. Mémoire sur les variations de la température des Alpes de la Suisse (rédigé en 1821). Mémoires de la Société Helvétique des Sciences Naturelles 1, 138.Google Scholar
von Buch, L. 1815. Ueber die Ursachen der Verbreitung grosser Alpengeschiebe. Abhandlungen der Physicalischen Klasse der Königlich-Preussischen Akademie der Wissenschaften, Jahren 1804–1811, 161181.Google Scholar
von Buch, L. 1818. Sur les causes auxquelles on peut attribuer le transport des blocs de roches des Alpes sur le Jura. Annales de chimie et de physique [Paris] 7, 1732.Google Scholar
von Humboldt, A. 1821. On isothermal lines and distribution of heat over the globe. Edinburgh Philosophical Journal iv, 262–81.Google Scholar
Wagner, B., Vogel, H., Francke, F., Friedrich, T., Donders, T., Lacey, J., Leng, M., Regattieri, E., Sadori, L., Wilke, T., Zanchetta, G., Albrecht, C., Bertini, A., Combourieu-Nebout, N., Cvetkoska, A., Giaccio, B., Grazhdani, A., Hauffe, T., Holtvoeth, J., Joannin, S., Jovanovska, E., Just, J., Kouli, K., Kousis, I., Koutsodendris, A., Krastel, S., Leicher, N., Levkov, Z., Lindhorst, K., Masi, A., Melles, M., Mercuri, A.M., Nomade, S., Nowaczyk, N., Panagiotopoulos, K., Peyron, O., Reed, J.M., Sagnotti, L., Sinopoli, G., Stelbrink, B., Sulpizio, R., Timmermann, A., Tofilovska, S., Torri, P., Wagner-Cremer, F., Wonik, T. & Zhang, X. 2019. Mediterranean Winter rainfall in phase with African monsoons during the past 1.36 million years. Nature 573, 256–60.CrossRefGoogle ScholarPubMed
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M. W., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A. & Zachos, J. C. 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369, 1383–7.CrossRefGoogle ScholarPubMed
Wijmstra, T. A. 1969. Palynology of the first 30 metres of a 120 m deep section in northern Greece. Acta Botanica Neerlandica 18, 511–27.Google Scholar
Wijmstra, T. A. & Groenhart, M. C. 1983. Record of 700,000 years vegetational history in eastern Macedonia (Greece). Revista de la Academia Colombiana Ciencias Exactas, Físicas y Naturales 15, 8798.Google Scholar
Wijmstra, T. A. & Smit, A. 1976. Palynology of the middle part (30–78 metres) of the 120 m deep section in northern Greece (Macedonia). Acta Botanica Neerlandica 25, 297312.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292, 686–93.CrossRefGoogle ScholarPubMed
Zhao, Y., Tzedakis, P. C., Li, Q., Qin, F., Cui, Q., Liang, C., Birks, H. J. B., Liu, Y., Zhang, Z., Ge, J., Zhao, H., Felde, V.A., Deng, C., Cai, M., Li, H., Ren, W., Wei, H., Yang, H., Zhang, J. & Guo, Z. 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 Myr. Science Advances 6, eaay6193.CrossRefGoogle Scholar