Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T20:23:21.721Z Has data issue: false hasContentIssue false

A review of recent discoveries of exceptionally preserved fossil fishes from the Gogo sites (Late Devonian, Western Australia)

Published online by Cambridge University Press:  20 July 2018

John A. Long
Affiliation:
College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, Australia 5001.
Kate M. Trinajstic
Affiliation:
Department of Environment and Agriculture, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia 6845.

Abstract

Significant new material of Late Devonian Gogo Formation fish fossils is still surfacing. Collecting in the past decade has uncovered the first Gogo shark fossils (Gogoselachus plus another new undescribed taxon), the first acanthodian (Halmacanthodes ahlbergi), the first coelacanth, as well as the first placoderm embryos. Recent studies have elucidated the nature of placoderm claspers, pelvic girdles, synarcuals and embryos, the structure of their teeth, a description of well-preserved muscles in placoderms, and how muscles attach to bones. Molecular biomarkers have also been identified in Gogo fossils. There are now five basal ray-fin fishes in the fauna, including one undescribed new taxon. The lungfish fauna from Gogo is the most diverse known for any Devonian site, with 10 genera and 12 species. The dermal skeleton and endocast of the dipterid Rhinodipterus kimberleyensis have been described in detail from CT scans; and the ontogenetic stages of neurocranium formation in Griphognathus. New specimens of the tetrapodomorph fish Gogonasus andrewsae have shed further light on its endocranium, pectoral girdle and fin. Through their exceptional preservation of both hard and varied kinds of soft tissues, the Gogo fishes remain crucial for resolving key debates on the diversification, physiology, biomechanics and phylogenetic relationships of early gnathostomes.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

11. References

Ahlberg, P. E., Trinajstic, K., Johnason, Z. & Long, J. A. 2009. Pelvic claspers confirm chondrichthyan-like internal fertilisation in arthrodires. Nature 459, 888889.Google Scholar
Andrews, S. M.., Long, J., Ahlberg, P., Barwick, R. & Campbell, K. 2006. The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: with a functional interpretation of the skeleton. Transactions of the Royal Society of Edinburgh: Earth Sciences 96 (for 2005), 197307.Google Scholar
Brazeau, M. D. & De Winter, V. 2015. The hyoid arch and braincase anatomy of Acanthodes support chondrichthyan affinity of ‘acanthodians'. Proceedings of the Royal Society of London, Series B 282. DOI: 10.1098/rspb.2015.2210.Google Scholar
Briggs, D. E., Rolfe, W. I., Butler, P. D., Liston, J. J. & Ingham, J. K. 2011. Phyllocarid crustaceans from the Upper Devonian Gogo Formation, Western Australia. Journal of Systematic Palaeontology 9, 399424.Google Scholar
Burrow, C. J., Trinajstic, K. & Long, J. A. 2012. First acanthodian from the Upper Devonian (Frasnian) Gogo Formation, Western Australia. Historical Biology 24, 349357.Google Scholar
Campbell, K. S. W., Barwick, R. E. & Senden, T. J. 2012. Development of the posterior endocranium of the Devonian dipnoan Griphognathus whitei. Journal of Vertebrate Paleontology 32, 781798.Google Scholar
Campbell, K. S. W. & Barwick, R. E. 2011. A new unusual osteichthyans fish from the Gogo Formation, Western Australia. Journal of the Royal Society of Western Australia 94, 473502.Google Scholar
Challands, T. J. 2015. The cranial endocast of the Middle Devonian dipnoan Dipterus valenciennesi and a fossilised otoconial mass. Papers in Palaeontology 1(3), 289317.Google Scholar
Choo, B. 2011. Revision of the actinopterygian genus Mimipiscis (Mimia) from the Upper Devonian Gogo Formation of Western Australia and the interrelationships of the early Actinopterygii. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102, 77104.Google Scholar
Choo, B. 2015. A new species of the Devonian actinopterygians Moythomasia from Bergisch Gladbach, Germany, and fresh observations on M. durgaringa from the Gogo Formation of Western Australia. Journal of Vertebrate Paleontology 35(4), e952817.Google Scholar
Choo, B., Long, J. & Trinajstic, K. 2009. A new genus and species of basal actinopterygian fish from the Upper Devonian Gogo Formation of Western Australia. Acta Zoologica 90, 194210.Google Scholar
Clement, A. 2012. A new species of long-snouted lungfish from the Late Devonian of Australia, and its functional and biogeographical implications. Palaeontology 55, 5171.Google Scholar
Clement, A. M., Long, J. A. Tafforeau, P. & Ahlberg, P. E. 2016. The dipnoan buccal pump reconstructed in 3D for air breathing in Devonian lungfishes. Paleobiology 42, 289304.Google Scholar
Clement, A. M. & Ahlberg, P. E. 2014. The first virtual endocast of a lungfish (Sarcopterygii: Dipnoi). PLOS One 9(11), e113898. doi:10.1371/journal.pone.0113898.Google Scholar
Davis, S. P., Finarelli, J. A. & Coates, M. I. 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486, 247250.Google Scholar
Donoghue, P. C. J. & Rücklin, M. 2014. The ins and outs of the evolutionary origin of teeth. Evolution and Development 18(1), 1930.Google Scholar
Druce, E. C. 1976. Conodont biostratigraphy of the Upper Devonian reef complexes of the Canning Basin, Western Australia. Bureau of Mineral Resources of Australia, Bulletin 158, 1303.Google Scholar
Dupret, V., Sanchez, S., Goujet, D., Tafforeau, P. & Ahlberg, P. E. 2014. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 507, 500503.Google Scholar
Freidman, M. 2007a. The interrelationships of Devonian lungfishes (Sarcopterygii; Dipnoi) as inferred from neurocranial evidence and new data from the genus Soederberghia Lehman 1959. Zoological Journal of the Linnean Society 151, 115171.Google Scholar
Friedman, M. 2007b. Cranial structure in the Devonian lungfish Soederberghia groenlandica and its implications for the interrelationships of ‘rhynchodipterids'. Transactions of the Royal Society of Edinburgh: Earth Sciences 98, 179198.Google Scholar
Gardiner, B. G. 1984. The relationships of the palaeoniscoid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History), Geology 37, 1–428.Google Scholar
Giles, S., Darras, L., Clement, G., Blieck, A. & Friedman, M. 2015a. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes. Proceedings of the Royal Society, London, Series B 282, 20151485.Google Scholar
Giles, S., Coates, M. I., Garwood, R. J., Brazeau, M. D., Atwood, R., Johansen, Z. & Friedman, M. 2015b. Endoskeletal structures in Cheirolepis (Osteichthyes, Actinopterygii), and early ray-finned fish. Palaeontology 58(5), 849870.Google Scholar
Giles, S. & Friedman, M. 2014. Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii). Journal of Paleontology 88, 636651.Google Scholar
Glenister, B. F. & Klapper, G. 1966. Upper Devonian conodonts from the Canning Basin, Western Australia. Journal of Paleontology 40, 777842.Google Scholar
Graham, J. B., Wegner, N., Miller, L. N., Jew, C. N., Lai, N. C., Berquist, R. M., Frank, L. R. & Long, J. A. 2014. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods. Nature Communications 5, 3022.Google Scholar
Harapetian, V., Roelofs, B. P. A., Trinajstic, K. & Turner, S. 2016. Famennian survivor turiniid thelodonts of North and East Gondwana. In Becker, R. T., Kőnigshof, P. & Brett, C. E. (eds) Devonian Climate, Sea Level and Evolutionary Events. Geological Society, London: Special Publications 423, 273289.Google Scholar
Holland, T. & Long, J. A. 2009. On the phylogenetic position of Gogonasus andrewsae Long, 1985 within the Tetrapodamorpha. Acta Zoologica 90, 285296.Google Scholar
Holland, T. 2013. Pectoral Girdle and Fin Anatomy of Gogonasus andrewsae Long, 1985: Implications for Tetrapodomorph Limb Evolution. Journal of Morphology 274, 147164.Google Scholar
Holland, T. 2014. The endocranial anatomy of Gogonasus andrewsae Long, 1985 revealed through micro CT-scanning. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 105, 934.Google Scholar
Johanson, Z., Trinajstic, K., Carr, R. & Ritchie, A. 2013. Evolution and development of the synarcual in early vertebrates. Zoomorphology 132, 95110.Google Scholar
Johnson, Z. & Trinajstic, K. 2014. Fossilized ontogenies: the contribution of placoderm ontogeny to our understanding of the evolution of early gnathostomes. Palaeontology 57(3), 505516.Google Scholar
Long, J. A. 2006. Swimming in Stone – The amazing Gogo fossils of the Kimberley. Perth: Fremantle Arts Centre Press. 320 pp.Google Scholar
Long, J. A. 2007. A strange new edentulous gnathostome fish from the Upper Devonian Gogo Formation. In Warren, A. (ed.) Conference on Australasian Vertebrate Evolution, Palaeontology and Systematics 2007. Geological Society of Australia Abstracts 85, 15.Google Scholar
Long, J. A. 2010. Holodontid lungfishes from the Late Devonian Gogo Formation of Western Australia. In Yu, X., Maisey, J. & Miao, D. (eds) Fossil fishes and related Biota: Morphology, Phylogeny and Paleobiogeography – In honour of Chang Meeman, 275298. Berlin: Verlag Pfeil.Google Scholar
Long, J. A. 2011. The Rise of Fishes - 500 million years of evolution. Baltimore: Johns Hopkins University Press. 288 pp.Google Scholar
Long, J. A. 2016. Quantifying scientific significance of a fossil site: the Gogo Fossil sites (Late Devonian, Western Australia) as a case study. Memoirs of Museum Victoria 74, 515.Google Scholar
Long, J. A., Young, G. C., Holland, T., Senden, T. & Fitzgerald, E. M. G. 2006. An exceptional Devonian fish shed slight on tetrapod evolution. Nature 444, 199202.Google Scholar
Long, J. A., Trinajstic, K. M., Young, G. C. & Senden, T. 2008. Live birth in the Devonian period. Nature 453, 650652.Google Scholar
Long, J. A., Trinajstic, K. M. & Johanson, Z. 2009. Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457, 11241127.Google Scholar
Long, J. A., Mark-Kurik, E., Johanson, Z., Lee, M. S. Y., Young, G. C., Zhu, M., Ahlberg, P. E., Newman, M., Jones, R., Den Blaauwen, J., Choo, B. & Trinajstic, K. 2015a. Copulation in antiarch placoderms and the origin of gnathostome internal fertilisation. Nature 517, 196199.Google Scholar
Long, J. A., Burrow, C. J., Ginter, M., Maisey, J. G., Trinajstic, K. M., Coates, M. I., Young, G. C. & Senden, T. J. 2015b. First Shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia Sheds New Light on the Development of Tessellated Calcified Cartilage. PLOS One 10(5), e0126066. doi:10.1371/journal.pone.0126066Google Scholar
Long, J. A. & Trinajstic, K. 2010. The Late Devonian Gogo Formation Lägerstatte – Exceptional preservation and diversity in early vertebrates. Annual Reviews of Earth and Planetary Sciences 38, 665680.Google Scholar
Lu, J. & Zhu, M. 2010. An onychodont fish (Osteichthyes, Sarcopterygii) from the Early Devonian of China, and the evolution of the Onychodontiformes. Proceedings of the Royal Society, London B 277, 293299.Google Scholar
Maisey, J. G. 2013. The diversity of tessellated calcification in modern and extinct chondrichthyans. Revue de Paléobiologie 32, 355371.Google Scholar
Melendez, I., Grice, K., Trinajstic, K., Ladjavardi, M., Greenwood, P. & Thompson, K. 2013a. Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: An organic geochemical perspective. Geology 41, 123126.Google Scholar
Melendez, I., Grice, K. & Schwark, L. 2013b. Exceptional preservation of Palaeozoic steroids in a diagenetic continuum. Scientific Reports 3. doi:10.1038/srep02768.Google Scholar
Miles, R. S. 1971. The Holonematidae (placoderm fishes): a review based on new specimens of Holonema from the Upper Devonian of Western Australia. Philosophical Transactions of the Royal Society, London, Series B 263, 101234.Google Scholar
Nazarov, B. B., Cockbain, A. E. & Playford, P. E. 1982. Late Devonian Radiolaria from the Gogo Formation, Canning Basin, Western Australia. Alcheringa 6, 161174.Google Scholar
Nazarov, B. B. & Ormiston, A. R. 1983. Upper Devonian (Frasnian) radiolarian fauna from the Gogo Formation, Western Australia. Micropalaeontology 29, 454466.Google Scholar
Playford, P. E. 1980. The Devonian “Great Barrier Reef” of the Canning Basin, Western Australia. American Association of Petroleum Geologists Bulletin 64, 814840.Google Scholar
Playford, P. E., Hocking, R. M. & Cockbain, A. E. 2009. Devonian reef complexes of the Canning Basin, Western Australia. Geological Survey of Western Australia Bulletin 145, 1444.Google Scholar
Playford, P. E. & Lowry, D. 1966. Devonian reef complexes of the Kimberley region, Western Australia. Geological Survey of Western Australia, Bulletin 118, 1150.Google Scholar
Playford, P. E. & Wallace, C. J. K. 2001. Exhalative Mineralization in Devonian Reef Complexes of the Canning Basin, Western Australia. Economic Geology 96, 15951610.Google Scholar
Roelofs, B., Playton, T., Barham, M. & Trinajstic, K. 2015. Upper Devonian microvertebrates from the Canning Basin, Western Australia. Acta Geological Polonica 65, 69101.Google Scholar
Rücklin, M., Donoghue, P. C. J., Johanson, Z., Trinajstic, K., Marone, F. & Stampanoni, M. 2012. Development of teeth and jaws in the earliest jawed vertebrates. Nature 491, 748751.Google Scholar
Sallan, L. C. 2014. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biological Reviews 89(4), 950971.Google Scholar
Sanchez, S., Dupret, V., Tafforeau, P., Trinajstic, K., Ryll, B., Gouttenoirea, P-J., Wretman, L., Zylberberge, L., Peyrina, F. & Ahlberg, P. E. 2013. 3D Microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography. PLOS ONE 8(2), e56992. doi:10.1371/journal.pone.0056992Google Scholar
Smith, M. M. & Johanson, Z. 2003. Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates. Science 299, 12351236.Google Scholar
Swartz, B. 2012. A marine stem-tetrapod from the Devonian of Western North America. PloS One 7, 1–11, e33683. doi:10.1371/journal.pone.0033683.Google Scholar
Trinajstic, K., Marshall, C., Long, J. A. & Bifield, K. 2007. Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biology Letters 3, 197200.Google Scholar
Trinajstic, K., Burrow, C. J. & Long, J. A. 2011. Update of the strange new jawed fish from the Late Devonian Gogo Formation, Western Australia. 12th International Symposium on Early Vertebrates/Lower Vertebrates, Texas, June 11–14, 2011. Ichthyolith Issues Special Publication 12, 2021.Google Scholar
Trinajstic, K., Long, J. A., Johanson, Z., Young, G. C. & Senden, T. 2012. New morphological information on the ptyctodontid fishes (Placodermi, Ptyctodontida) from Western Australia. Journal of Vertebrate Palaeontology 32, 757780.Google Scholar
Trinajstic, K., Sanchez, S., Dupret, V., Tafforeau, P., Long, J. A., Young, G. C., Senden, T. Boisvert, C., Power, N. & Ahlberg, P. E. 2013. Musculature of the earliest jawed vertebrates. Science 341, 160164.Google Scholar
Trinajstic, K., Roelofs, B., Burrow, C. J., Long, J. A. & Turner, S. 2014. Devonian vertebrates from the Canning and Carnarvon Basins with an overview of Paleozoic vertebrates of Western Australia. Journal of the Royal Society of Western Australia 97, 133151.Google Scholar
Trinajstic, K. M., Boisvert, C., Long, J. A., Maksimenko, A. & Johanson, Z. 2015. Pelvic and reproductive structures in placoderms (stem gnathostomes). Biological Reviews 90, 467501.Google Scholar
Trinajstic, K. & George, A. D. 2009. Microvertebrate biostratigraphy of Upper Devonian (Frasnian) carbonate rocks in the Canning and Carnarvon Basins of Western Australia. Palaeontology 52, 642659.Google Scholar
Trinajstic, K. & Long, J. A. 2009. A new genus and species of Ptyctodont (Placodermi) from the Late Devonian Gneudna Formation, Western Australia, and an analysis of ptyctodont phylogeny. Geological Magazine 146, 743760.Google Scholar
Young, G. C. 1984. Reconstruction of the jaws and braincase in the Devonian placoderm fish Bothriolepsis. Palaeontology 27, 625661.Google Scholar
Zhu, M., Yu, X., Ahlberg, P. E., Choo, B., Lu, J., Qiao, T., Qu, Q., Zhao, W., Jia, L., Blom, H. & Zhu, Y.-A. 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502, 188193.Google Scholar