Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:19:13.326Z Has data issue: false hasContentIssue false

Granitic pegmatites

Published online by Cambridge University Press:  03 November 2011

David London
Affiliation:
School of Geology and Geophysics, University of Oklahoma, 100 East Boyd Street, SEC 810, Norman, OK 73019,U.S.A. E-mail: dlondon@uoknor.edu

Abstract:

The primary focus of this review is on P-T conditions, mineralogical indicators of melt or fluid composition and textural evolution; lesser treatment is given to pegmatite sources or to pegmatite-wallrock interactions. Investigations of stable and radiogenic isotopes have revealed that the source materials for pegmatites are likely to be more heterogeneous or varied than previously thought, especially for peraluminous pegmatites, but that overall pegmatites bear a clear intrusive relationship with their hosts, as opposed to an origin in situ. The P-T conditions of crystallisation of some lithium-rich pegmatites have been constrained by lithium aluminosilicate stability relations in combination with stable isotope or fluid inclusion methods. Experimental studies have elucidated the effects of components such as Li, B, P and F, which are common in some classes of pegmatites, to liquidus relations in the hydrous haplogranite system. Experimentation has also provided corroboration of an old concept of pegmatite crystallisation—that pegmatites owe their distinctive textures and mineral/chemical zonation to relatively rapid crystallisation of melt from the margins inwards at conditions far from the equilibrium (i.e. from supercooled liquids). The origin of aplites, whether alone, layered, or paired with pegmatites, remains an active area of research. Studies of fluid inclusions, crystal-vapour equilibria and wallrock alteration have helped to define the timing and compositions of vapour phases in pegmatites and to aid in the economic evaluation of deposits.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aines, R. D., Kirby, S. H.&Rossman, G. R. 1984. Hydrogen speciation in synthetic quartz. PHYS CHEM MINER 11, 204–12.CrossRefGoogle Scholar
Aines, R. D.&Rossman, G. R. 1984. The high temperature behavior of water and carbon dioxide in cordierite and beryl. AM MINER 69, 319–27.Google Scholar
Anderson, G. M.&Burnham, C. W. 1981. Feldspar solubility and the transport of aluminum under metamorphic conditions. AM J SCI 283–A, 283–97.Google Scholar
Bakker, R. J.&Jansen, J. B. H. 1994. A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations. CONTRIB MINERAL PETROL 116, 720.Google Scholar
Barker, C.&Sommer, M. A. 1974. Potential method of geobarometry using quartz. NATURE 250, 402–4.Google Scholar
Beall, G. H.&Rittler, H. L. 1982. Glass-ceramics based on pollucite. In Simmons, J. H., Uhlmann, D. R.&Beall, G. H. (eds) Advances in ceramics, Vol. 4. Nucleation and crystallization of glasses, 301–12. Columbus: The American Ceramic Society.Google Scholar
Beger, R. M. 1969. The crystal structure and chemical composition of pollucite. Z K RISTALLOGR 129, 280302.Google Scholar
Benard, F., Moutou, P.&Pichavant, M. 1985. Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J GEOL 93, 271–91.Google Scholar
Brookins, D. G. 1986. Rubidium—strontium geochronologic studies of large granitic pegmatites. N JAHRB MINERAL ABH 156, 8197.Google Scholar
Brown, G. E. Jr&Ewing, R. C. (eds) 1986. R. H. Jahns memorial issue: the mineralogy, petrology, and geochemistry of granitic pegmatites and related granitic rocks. AM MINERAL 71, 233654.Google Scholar
Brown, G. E. Jr&Mills, B. A. 1986. High-temperature structure and crystal chemistry of hydrous alkali-rich beryl from the Harding pegmatite, Taos County, New Mexico. AM MINERAL 71, 547–56.Google Scholar
Burnham, C. W. 1967. Hydrothermal fluids at the magmatic stage. In Barnes, H. L. (ed.) Geochemistry of hydrothermal ore deposits, 1st edn, 3476. New York: Holt, Reinhart, and Winston.Google Scholar
Burnham, C. W.&Nekvasil, H. 1986. Equilibrium properties of granite pegmatite magmas. AM MINERAL 71, 239–63.Google Scholar
Burt, D. M. 1989. Vector representation of tourmaline compositions. AM MINERAL 74, 826–39.Google Scholar
Cameron, E. N., Jahns, R. H., McNair, A. H.&Page, L. R. 1949. Internal structure of granitic pegmatites. ECON GEOL MONOGR 2, 115 pp.Google Scholar
Candela, P. A.&Picolli, P. M. 1995. Model ore-metal partitioning from melts into vapor and vapor/brine mixtures. In Thompson, J. F. H. (ed.) Magmas, fluids, and ore deposits. MINERAL ASSOC CAN SHORT COURSE HANDB 23, 101–27.Google Scholar
Cerny, P. 1974. The present status of the analcime—pollucite series. CAN MINERAL 12, 334–41.Google Scholar
Cerny, P. (ed.) 1982a. Granitic pegmatites in science and industry. MINERAL ASSOC CAN SHORT COURSE HANDB 8, 555 pp.Google Scholar
Cerny, P. 1982b. The Tanco pegmatite at Bernic Lake, Manitoba. In Cerny, P. (ed.) Granitic pegmatites in science and industry. MINERAL ASSOC CAN SHORT COURSE HANDB 8, 527–43.Google Scholar
Cerny, P. 1989. Exploration strategy and methods for pegmatite deposits of tantalum. In Möller, P., Cerny, P.&Saupé, P. (eds) Lanthanides, tantalum and niobium, 274302. Berlin: Springer-Verlag.Google Scholar
Cerny, P. 1991. Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies? PRECAMBRIAN RES 51, 429–68.CrossRefGoogle Scholar
Cerny, P. 1992. Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. GEOSCI CAN 18, 6881.Google Scholar
Cerny, P. 1995. Regional zonation of rare-element pegmatite groups [abstract]. GAC-MAC PROG ABSTR 20, A14.Google Scholar
Cerny, P.&Brisbin, W. C. 1982. The Osis Lake pegmatitic granite, Winnipeg River district, southeastern Manitoba. In Cerny, P. (ed.) Granitic pegmatites in science and industry. MINERAL ASSOC CAN SHORT COURSE HANDB 8, 545–55.Google Scholar
Cerny, P.&Ercit, T. S. 1989. Mineralogy of niobium and tantalum: crystal chemical relationships, paragenetic aspects and their economic implications. In Möller, P., Cerny, P.&Saupé, F. (eds) Lanthanides, tantalum, and niobium, 2779. Berlin: Springer-Verlag.Google Scholar
Cerny, P.&Macek, J. 1972. The Tanco pegmatite at Bernic Lake, Manitoba. V. Colored potassium feldspars. CAN MINERAL 11, 679–89.Google Scholar
Cerny, P.&Simpson, F. M. 1977. The Tanco pegmatite at Bernic Lake, Manitoba. IX. Beryl. CAN MINERAL 15, 489–99.Google Scholar
Cerny, P.&Simpson, F. M. 1978. The Tanco pegmatite at Bernic Lake, Manitoba. X. Pollucite. CAN MINERAL 16, 325–33.Google Scholar
Cerny, P., Trueman, D. L., Ziehkle, D. V., Goad, B. E.&Paul, B. J. 1981. The Cat Lake-Winnipeg River and the Wekusko Lake pegmatite fields, Manitoba. Manitoba Department of Energy and Mines, Mineral Resources Division. ECON GEOL REP ER80–1, 234 pp.Google Scholar
Cerny, P., Meintzer, R. E.&Anderson, A. J. 1985. Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. CAN MINERAL 23, 381421.Google Scholar
Chakoumakos, B. C.&Lumpkin, G. R. 1990. Pressure-temperature constraints on the crystallization of the Harding pegmatite, Taos County, New Mexico. CAN MINERAL 28, 287–98.Google Scholar
Channer, D. M., Der, & Spooner, E. T. C. 1994. Combined gas and ion chromatographic analysis of fluid inclusions: applications to Archean granite pegmatite and gold-quartz vein fluids. GEOCHIM COSMOCHIM ACTA 58, 1101–18.Google Scholar
Chappell, B. W.&White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. TRANS ROY SOC EDINBURGH EARTH SCI 83, 126.Google Scholar
Clark, G. S.&Cerny, P. 1987. Radiogenic 87Sr, its mobility, and the interpretation of Rb—Sr fractionation trends in rare-element granitic pegmatites. GEOCHIM COSMOCHIM ACTA 51, 1011–8.Google Scholar
Cordier, P., Boulogne, B.&Doukhan, J.-C. 1988. Water precipitation and diffusion in wet quartz and wet berlinite AlPO4. BULL MINERAL 111, 113–37.Google Scholar
Dennen, W. H., Blackburn, W. H.&Quesada, A. 1970. Aluminum in quartz as a geothermometer. CONTRIB MINERAL PETROL 27, 332–42.Google Scholar
Desborough, G. A., Ludington, S. D.&Sharp, W. N. 1980. The Redskin Granite: a rare-metal-rich Precambrian pluton, Colorado, U.S.A. MINERAL MAG 43, 959–66.Google Scholar
Drysdale, D. J. 1992. The pollucite—analcime series, 1974-1990. PAPERS DEP EARTH SCI UNIV QUEENSLAND 12, 317–24.Google Scholar
Dujon, S. C, Lagache, M.&Sebastian, A. 1991. Experimental study of Li-rich granitic pegmatites: part III. Thermodynamic implications of the experiments in the Na—Li—Cs system: consequences for the properties of solutes. AM MINERAL 76, 1614–19.Google Scholar
Duke, E. F., Redden, J. A.&Papike, J. J. 1988. Calamity Peak layered granite—pegmatite complex, Black Hills, South Dakota. 1. Structure and emplacement. GEOL SOC AM BULL 100, 825–40.Google Scholar
Ercit, T. S., Cerny, P.&Hawthorne, F. C. 1992a. The wodginite group. III. Classifications and new species. CAN MINERAL 30, 633–8.Google Scholar
Ercit, T. S., Cerny, P., Hawthorne, F. C.&McCammon, C. A. 1992b. The wodginite group. II. Crystal chemistry. CAN MINERAL 30, 613–31.Google Scholar
Ercit, T. S., Hawthorne, F. C.&Cerny, P. 1992c. The wodginite group. I. Structural crystallography. CAN MINERAL 30, 597611.Google Scholar
Ercit, T. S., Wise, M. A.&Cerny, P. 1995. Compositional and structural systematics of the columbite group. AM MINERAL 80, 613–9.Google Scholar
Fenn, P. M. 1977. The nucleation and growth of alkali feldspars from hydrous melts. CAN MINERAL 15, 135–61.Google Scholar
Fenn, P. M. 1986. On the origin of graphic granite. AM MINERAL 71, 325–30.Google Scholar
Foord, E. E. 1976. Mineralogy and petrogenesis of layered pegmatiteaplite dikes in the Mesa Grande district, San Diego County, California. Ph.D. Thesis, Stanford University.Google Scholar
Foord, E. E., London, D., Kampf, A. F., Shigley, J. E.&Snee, L. W. 1991. Gem-bearing pegmatites of San Diego County, California. In Walawender, M. J.&Hanan, B. B. (eds) Geological excursions in southern California and Mexico. Guidebook for the 1991 meeting, Geological Society of America. San Diego: Department of Geological Sciences, San Diego State University.Google Scholar
Francis, C. A., Wise, M. A., Kampf, A. R., Brown, C. D.&Whitmore, R. W. 1993. Granitic pegmatites in northern New England. In Cheney, J. T.&Hepburn, J. C. (eds) Field trip guidebook for the northeastern United States: 1993 Boston GSA, Vol. 1. DEP GEOL GEOGR UNIV MASSACHUSETTS CONTRIB 67,E124.Google Scholar
Goad, B. E.&Cerny, P. 1981. Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba. CAN MINERAL 19, 177–94.Google Scholar
Gresens, R. H. 1969. Tectonic-hydrothermal pegmatites. I. The model. CONTRIB MINERAL PETROL 15, 345–55.Google Scholar
Haralampiev, A.&Grover, J. 1993. Synthesis experiments in the binary system tsilaisite—dravite, Na[MnxMg1−x]3Al6(BO3)3-Si6O18(OH)4, at T = 375–700°C and P = 2000 bars: does garnet control the occurrence of tourmaline? [abstract] GEOL SOC AM ABSTR PROGR 25, A945.Google Scholar
Harvey, M. J. 1991. An experimental study of greywacke partial melting in the presence of water, fluorine, and boron. Ph.D. Thesis, University of Manchester.Google Scholar
Henderson, C. M. B.&Manning, D. A. C. 1984. The effect of Cs on phase relations in the granite system: stability of pollucite. In Progress in experimental petrology, sixth progress report of research supported by N.E.R.C, 1981–1984. NAT ENVIRON RES COUN (UK) PUBL SER D 25, 41–2.Google Scholar
Hervig, R. L.&Peacock, S. M. 1989. Implications of trace element zoning in deformed quartz from the Santa Catalina mylonite zone. J GEOL 89, 343–50.Google Scholar
Holtz, F.&Johannes, W. 1991. Effect of tourmaline on melt fraction and composition of first melts in quartzofeldspathic gneiss. EUR J MINERAL 3, 527–36.Google Scholar
Icenhower, J. P. 1995. Experimental determination of element behavior in silicic systems during hydrous partial fusion. Ph.D. Thesis, University of Oklahoma.Google Scholar
Icenhower, J. P.&London, D. 1995. An experimental study of element partitioning between biotite, muscovite, and coexisting peraluminous granitic melts at 200 MPa (H2O). AM MINERAL 80, 1229–51.Google Scholar
Icenhower, J. P.&London, D. 1996a. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. AM MINERAL 81, 719–34.Google Scholar
Icenhower, J. P.&London, D. 1996b. Pollucite as a liquidus phase in granite pegmatite melts, in press.Google Scholar
Icenhower, J. P., London, D.&Layne, G. D. 1994. Element partitioning among biotite, muscovite, garnet, cordierite, and peraluminous melt: behavior of Li and Mn [abstract]. GEOL SOC AM ABSTR PROGR 26, A290.Google Scholar
Jahns, R. H. 1953a. The genesis of pegmatites. I. Occurrence and origin of giant crystals. AM MINERAL 38, 563–98.Google Scholar
Jahns, R. H. 1953b. The genesis of pegmatites (II). Quantitative analysis of lithium bearing pegmatite, Mora County, New Mexico. AM MINERAL 38, 1078–112.Google Scholar
Jahns, R. H. 1955. The study of pegmatites. ECON GEOL FIFTIETH ANNIV VOL, 1025–130.Google Scholar
Jahns, R. H. 1982. Internal evolution of pegmatite bodies. In Cerny, P. (ed.) Granitic pegmatites in science and industry. MINERAL ASSOC CAN SHORT COURSE HANDB 8, 293327.Google Scholar
Jahns, R. H.&Burnham, C. W. 1969. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. ECON GEOL 64, 843–64.CrossRefGoogle Scholar
Jahns, R. H.&Tuttle, O. F. 1963. Layered pegmatite—aplite intrusives. MINERAL SOC AM SPEC PAP 1, 7892.Google Scholar
Jolliff, B. L., Papike, J. J.&Shearer, C. K. 1986. Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatites, Black Hills, South Dakota. AM MINERAL 71, 472500.Google Scholar
Jolliff, B. L., Papike, J. J.&Shearer, C. K. 1989. Inter- and intracrystal REE variations in apatite from the Bob Ingersoll pegmatites, Black Hills, South Dakota. GEOCHIM COSMOCHIM ACTA 53, 429–41.Google Scholar
Jolliff, B. L., Papike, J. J.&Shearer, C. K. 1992. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatitic wallzones, Black Hills, South Dakota. GEOCHIM COSMOCHIM ACTA 56, 1915–39.Google Scholar
Keller, P. 1988. Dendritic phosphate minerals and their paragenetic relation to the silicate minerals of pegmatites from Namibia and from the Black Hills, South Dakota U.S.A. N. JAHRB MINERAL ABH 159, 249–81.Google Scholar
Keller, P., Fonatan, F.&Fransolet, A.-M. 1994. Intercrystalline cation partitioning between minerals of the triplite—zweiselite—magniotriple and triphylite—lithiophilite series in granitic pegmatites. CONTR1B MINERAL PETROL 118, 239–48.Google Scholar
Keppler, H. 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. CONTRIB MINERAL PETROL 114, 479–88.Google Scholar
Keppler, H.&Wyllie, P. J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite—H2O—HCl and haplogranite—H2O—HF. CONTRIB MINERAL PETROL 109, 139–50.Google Scholar
Kilinc, I. A. 1969. Experimental metamorphism and anatexis of shales and graywackes. Ph.D. Thesis, Pennsylvania State University.Google Scholar
Kleck, W. D. 1991. The origin of line rock and a model for the formation of Pala-type pegmatite bodies [abstract]. GEOL SOC AM ABSTR PROGR 23, A329.Google Scholar
Krogstad, E. J.&Walker, R. J. 1994. High closure temperatures of the U-Pb system in large apatites from the Tin Mountain pegmatite, Black Hills, South Dakota U.S.A. GEOCHIM COSMOCHIM ACTA 58, 3845–53.Google Scholar
Krogstad, E. J., Walker, R. J., Nabelek, P. I.&Russ-Nabelek, C. 1993. Lead isotope evidence for mixed sources of Proterozoic granites and pegmatites, Black Hills, South Dakota U.S.A. GEOCHIM COSMOCHIM ACTA 57, 4677–85.Google Scholar
Lagache, M. 1995. New experimental data on the stability of the pollucite-analcime series: application to natural assemblages. EUR J MINERAL 7, 319–23.CrossRefGoogle Scholar
Lagache, M.&Sebastian, A. 1991. Experimental study of Li-rich granitic pegmatites: part II. Spodumene + albite + quartz equilibrium. AM MINERAL 76, 611–6.Google Scholar
London, D. 1984. Experimental phase equilibria in the system LiAlSiO4-Si2O-H2O: a petrogenetic grid for lithium-rich pegmatites. AM MINERAL 69, 9951004.Google Scholar
London, D. 1985a. Origin and significance of inclusions in quartz: a cautionary example from the Tanco pegmatite, Manitoba. ECON GEOL 80, 1988–95.Google Scholar
London, D. 1985b. Pegmatites of the Middletown district, Connecticut. In 77th Annual Meeting, New England Intercollegiate Geological Conference, Yale University; Connecticut Geological and Natural History Survey Guidebook, Vol. 6. 509–33.Google Scholar
London, D. 1986a. The magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase equilibrium experiments. AM MINERAL 71, 376–95.Google Scholar
London, D. 1986b. Formation of tourmaline-rich pockets in miarolitic pegmatites. AM MINERAL 71, 396405.Google Scholar
London, D. 1986c. Holmquistite as a guide to pegmatitic rare metal deposits. ECON GEOL 81, 704–12.Google Scholar
London, D. 1990. Internal differentiation of rare-element pegmatites: a synthesis of recent research. In Stein, H. J.&Hannah, J. L. (eds) Ore-bearing granite systems. GEOL SOC AM SPEC PAP 246, 3550.Google Scholar
London, D. 1992a. The application of experimental petrology to the genesis and crystallization of granitic pegmatites. In Cerny, P.&Martin, R. F. (eds) Granitic pegmatites CAN MINERAL 30, 499540.Google Scholar
London, D. 1992b. Phosphorus in S-type magmas: the P2O5 content of feldspars from granites, pegmatites, and rhyolites. AM MINERAL 77, 126–45.Google Scholar
London, D. 1995. Geochemical features of peraluminous granites, pegmatites, and rhyolites as sources of lithophile metal deposits. In Thompson, J. F. H. (ed.) Magmas, fluids, and ore deposits MINERAL ASSOC CAN SHORT COURSE HANDB 23, 175202.Google Scholar
London, D.&Burt, D. M. 1982a. Chemical models for lithium aluminosilicate stabilities in pegmatites and granites. AM MINERAL 67, 494509.Google Scholar
London, D.&Burt, D. M. 1982b. Lithium minerals in pegmatites. In Cerny, P. (ed.) Granitic pegmatites in science and industry. MINERAL ASSOC CAN SHORT COURSE HANDB 8, 97133.Google Scholar
London, D.&Burt, D. M. 1982c. Lithium aluminosilicate occurrences in pegmatites and the lithium aluminosilicate phase diagram. AM MINERAL 67, 483–93.Google Scholar
London, D.&Manning, D. A. C. 1995. Chemical variation and significance of tourmaline from southwest England. ECON GEOL 90, 495519.Google Scholar
London, D., Hervig, R. L.&Morgan, G. B. VI 1988. Melt-vapor solubilities and elemental partitioning in peraluminous granitepegmatite systems: experimental results with Macusani glass at 200 MPa. CONTRIB MINERAL PETROL 99, 360–73.Google Scholar
London, D., Morgan, G. B. VI&Hervig, R. L. 1989. Vaporundersaturated experiments in the system macusanite–H2O, at 200 MPa, and the internal differentiation of granitic pegmatites. CONTRIB MINERAL PETROL 102, 117.Google Scholar
London, D., Cerny, P., Loomis, J. L.&Pan, J. J. 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. CAN MINERAL 28, 771–86.Google Scholar
London, D., Morgan, G. B. VI,Babb, H. A.&Loomis, J. L. 1993. Behavior and effects of phosphorus in the system Na2O–K2O–Al2O3–SiO2–P2O5–H2O at 200 MPa (H2O). CONTRIB MINERAL PETROL 113, 450–65.Google Scholar
London, D., Wolf, M. B.&Morgan, G. B. VI 1994. Boron saturation in granitic magmas: tourmaline–biotite–cordierite equilibria [abstract]. GEOL SOC AM ABSTR PROGR 26, A516.Google Scholar
London, D., Wolf, M. B.&Morgan, G. B. VI, 1995a. Silicate–phosphate equilibria in peraluminous granites and pegmatites [abstract]. GEOL SOC AM PROGR ABSTR 27, 411.Google Scholar
London, D., Wolf, M. B., Morgan, G. B. VI&Gallego, M. 1995b. The phosphorus cycle in peraluminous granitic magmas [abstract]. In Brown, M.&Picolli, P. M. (eds) The origin of granites and related rocks. Third Hutton Symposium. US GEOL SURV CIRC 1129, 90–1.Google Scholar
London, D., Morgan, G. B. VI&Wolf, M. B. Boron in granitic rocks and their contact aureoles. In Grew, E. S.&Anovitz, L. (eds) Boron: mineralogy, petrology, and geochemistry in the earth's crust. MINERAL SOC AM REV MINERAL 33, in press.Google Scholar
Long, P. E. 1978. Experimental determination of partition coefficients for Rb, Sr, and Ba between alkali feldspar and silicate liquid. GEOCHIM COSMOCHIM ACTA 42, 833–46.Google Scholar
Longstaffe, F. J., Cerny, P.&Muehlenbachs, K. 1981. Oxygen-isotope geochemistry of the granitoid rocks in the Winnipeg River pegmatite district, southeastern Manitoba. CAN MINERAL 19, 195204.Google Scholar
Luth, W. C.Jahns, R. H.&Tuttle, O. F. 1964. The granite system at pressures of 4 to 10 kilobars. J GEOPHYS RES 69, 759–73.Google Scholar
MacLellan, H. E.&Trembath, L. L. 1991. The role of quartz crystallization in the development and preservation of igneous texture in granitic rocks: experimental evidence at 1 kbar. AM MINERAL 76, 1291–305.Google Scholar
Manier-Glavinaz, V., D'Arco, P.&Lagache, M. 1989. Alkali partitioning between beryl and hydrothermal fluids: an experimental study at 600°C and 1·5 kbar. EUR J MINERAL 1, 645–55.Google Scholar
Manning, D. A. C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb. CONTRIB MINERAL PETROL 76, 206–15.Google Scholar
Manning, D. A. C. 1982. Chemical and morphological variation tourmalines from the Hub Kapong batholith of peninsular Thailand. MINERAL MAG 45, 139–47.Google Scholar
Martin, J. S.&Henderson, C. M. B. 1984. An experimental study of the effects of small amounts of lithium on the granite system. In Progress in experimental petrology, sixth progress report of research supported by N.E.R.C, 1981–1984. NAT ENVIRON RES COUN (UK) PUBL SER D 25, 30–5.Google Scholar
Martin, R. F. 1982. Quartz and the feldspars. In Cerny, P. (ed.) Granitic pegmatites in science and industry, MINERAL ASSOC CAN SHORT COURSE HANDB 8, 97133.Google Scholar
Martin, R. F.&Cerny, P. (eds) 1992. Granitic pegmatites. CAN MINERAL 30, 497954.Google Scholar
McBirney, A. R.&Noyes, R. M. 1979. Crystallization and layering of the Skaergaard intrusion. J PETROL 20, 487554.Google Scholar
Modreski, P. J. (ed.) 1986. Colorado pegmatites. Denver: Colorado Chapter, Friends of Mineralogy, Denver Museum of Natural History, 160 pp.Google Scholar
Moore, P. B. 1973. Pegmatite phosphates: descriptive mineralogy and crystal chemistry. MINERAL REC 1973, 103–30.Google Scholar
Moore, P. B. 1982. Pegmatite minerals of P(V) and B(III). In Cerny, P. (ed.) Granitic pegmatites in science and industry. MINERAL ASSOC CAN SHORT COURSE HANDB 8, 267–91.Google Scholar
Morgan, G. B. VI&London, D. 1987. Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. AM MINERAL 72, 1097–121.Google Scholar
Morgan, G. B. VI&London, D. 1989. Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks. CONTRIB MINERAL PETROL 102, 117.CrossRefGoogle Scholar
Morteani, G.&Gaupp, R. 1989. Geochemical evaluation of the tantalum potential of pegmatites. In Möller, P., Cerny, P.&Saupé, P. (eds) Lanthanides, tantalum and niobium. Berlin: Springer-Verlag, 303–10.Google Scholar
Mukhopadhyay, B.&Holdaway, M. J. 1994. Cordierite-garnetsillimanite–quartz equilibrium: I. New experimental calibration in the system FeO–Al2O3–SiO2–H2O and certain P–T–XH2O relations. CONTRIB MINERAL PETROL 116, 462–72.Google Scholar
Nabelek, P. I.&Glascock, M. D. 1995. REE-depleted leucogranites, Black Hills, South Dakota: a consequence of disequilibrium melting of monazite-bearing schists. J PETROL 36, 1055–71.Google Scholar
Nabelek, P. I., Russ-Nabelek, C.&Denison, J. R. 1992a. The generation and crystallization conditions of the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota U.S.A.: petrologic and geochemical constraints. CONTRIB MINERAL PETROL 110, 173–91.Google Scholar
Nabelek, P. I., Russ-Nabelek, C.&Haeussler, G. T. 1992b. Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota. GEOCHIM COSMOCHIM ACTA 56, 403–17.Google Scholar
Northrup, C. J., Lumpkin, G. R.&Ewing, R. C. 1989. Variation in the composition of beryl and apatite from the Harding pegmatite, Taos county, New Mexico [abstract]. GEOL SOC AM ABSTR PROGR 21, A1989.Google Scholar
Norton, J. J. 1983. Sequence of mineral assemblages in differentiated granitic pegmatites. ECON GEOL 78, 854–74.Google Scholar
Norton, J. J.&Redden, J. A. 1990. Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks, in the southern Black Hills, South Dakota. AM MINERAL 75, 631–55.Google Scholar
Novak, M.&Cerny, P. (eds) 1992a. Lepidolite 200, abstracts of papers. Brno: Masaryk University and Moravian Museum, 82 pp.Google Scholar
Novak, M.&Cerny, P. (eds) 1992b. Lepidolite 200, field trip guide. Brno: Masaryk University and Moravian Museum, 83 pp.Google Scholar
O'Connor, P. J., Gallagher, V.&Kennan, P. S. 1991. Genesis of lithium pegmatites from the Leinster Granite margin, southeastern Ireland: geochemical constraints. GEOL J 26, 295305.Google Scholar
Ortoleva, P. J. 1994. Geochemical self-organization. Oxford: Oxford University Press, 411 pp.Google Scholar
Orville, P. M. 1963. Alkali ion exchange between vapor and feldspar phases. AM J SCI 261, 201–37.Google Scholar
Palmer, M. R. 1991. Boron isotope systematics of hydrothermal fluids and tourmalines: a synthesis. CHEM GEOL 94, 111–21.Google Scholar
Palmer, M. R., London, D., Morgan, G. B. VI&Babb, H. A. 1992. Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: a temperature- and pressure-dependent isotopic system. CHEM GEOL 101, 123–9.Google Scholar
Petersen, J. S.&Lofgren, G. E. 1986. Lamellar and patchy intergrowths in feldspars: experimental crystallization of eutectic silicates. AM MINERAL 71, 343–55.Google Scholar
Perny, B., Eberhardt, P., Rasmeyre, K., Mullis, J.&Pankrath, R. 1992. Microdistribution of Al, Li, and Na in α quartz: possible causes and correlation with short-lived cathodoluminescence. AM MINERAL 77, 534–44.Google Scholar
Pichavant, M. 1987. Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. AM MINERAL 72, 1056–70.Google Scholar
Rockhold, J. R., Nabelek, P. I.&Glascock, M. D. 1987. Origin of rhythmic layering in the Calamity Peak satellite pluton of the Harney Peak Granite, South Dakota: the role of boron. GEOCHIM COSMOCHIM ACTA 51, 487–96.Google Scholar
Roedder, E. 1984. Fluid inclusions. MINERAL SOC AM REV MINERAL 12, 644 pp.Google Scholar
Roedder, E. 1992. Fluid inclusion evidence for immiscibility in magmatic differentiation. GEOCHIM COSMOCHIM ACTA 56, 520.Google Scholar
Romer, R. L.&Wright, J. E. 1992. U–Pb dating of columbites: a geochronologic tool to date magmatism and ore deposits. GEOCHIM COSMOCHIM ACTA 56, 2137–42.Google Scholar
Sebastian, A.&Lagache, M. 1990. Experimental study of the equilibrium between polluate, albite, and hydrothermal fluid in pegmatitic systems. MINERAL MAG 54, 447–54.Google Scholar
Sebastian, A.&Lagache, M. 1991. Experimental study of lithium-rich granitic pegmatites: part I. Petalite + albite + quartz equilibrium. AM MINERAL 76, 205–10.Google Scholar
Shearer, C. K.&Papike, J. J. 1988. Pegmatite-wallrock interaction: holmquistite-bearing amphibolite, Edison pegmatites, Black Hills, South Dakota. AM MINERAL 73, 324–37.Google Scholar
Shearer, C. K., Papike, J. J.&Simon, S. B. 1984. Pegmatite/wallrock interactions, Black Hills, South Dakota: progressive boron metasomatism adjacent to the Tip Top pegmatite. GEOCHIM COSMOCHIM ACTA 48, 2563–79.Google Scholar
Shearer, C. K., Papike, J. J., Simon, S. B.&Laul, J. C. 1986. Pegmatite-wallrock interactions, Black Hills, South Dakota: interaction between pegmatite-derived fluids and quartz-mica schist wallrock. AM MINERAL 71, 518–39.Google Scholar
Shearer, C. K., Papike, J. J.&Laul, J. C. 1987. Mineralogical and chemical evolution of a rare-element granite-pegmatite system: the Harney Peak granite, Black Hills, South Dakota. GEOCHIM COSMOCHIM ACTA 51, 473–86.Google Scholar
Shearer, C. K., Papike, J. J.&Jolliff, B. L. 1992. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite–pegmatite system, Black Hills, South Dakota. CAN MINERAL 30, 785809.Google Scholar
Sherriff, B. L., Grundy, H. D., Hartman, J. S., Hawthorne, F. C.&Cerny, P. 1991. The incorporation of alkalis in beryl: multinuclear MAS NMR and crystal-structure study. CAN MINERAL 29, 271–85.Google Scholar
Simmons, W. B.&Heinrich, E. W. 1980. Rare-earth pegmatites of the South Platte district, Colorado. COLORADO GEOL SURV RESOUR SER 11, 131 pp.Google Scholar
Simmons, W. B., Foord, E. E., Falster, A. U.&King, V. T. 1995. Evidence for an anatectic origin of granitic pegmatites, western Maine U.S.A. [abstract]. GEOL SOC AM ABSTR PROGR 27, A411.Google Scholar
Simpson, D. R. 1977. Aluminum phosphate variants of feldspar. AM MINERAL 62, 351–5.Google Scholar
Smeds, S.-A. 1994. Zoning and fractionation trends of a peraluminous NYF granitic pegmatite field at Falun, south-central Sweden. GEOL FOREN STOCHOLMS FORH 116, 175–84.Google Scholar
Smeds, S.-A.&Cerny, P. 1989. Pollucite from Proterozoic petalitebearing pegmatites of Utö, Stockholm archipelago, Sweden. GEOL FOREN STOCHOLMS FORH 111, 361–72.Google Scholar
Sokolov, Yu. M.&Khlestov, V. V. 1990. Garnets as indicators of the physicochemical conditions of pegmatite formation. INT GEOL REV 32, 1095–107.CrossRefGoogle Scholar
Spilde, M. N.&Shearer, C. K. 1992. A comparison of tantalumniobium oxide assemblages in two mineralogically distinct rareelement granitic pegmatites. Black Hills, South Dakota. CAN MINERAL 30, 719–37.Google Scholar
Spivack, A. J., Palmer, M. R.&Edmond, J. M. 1987. The sedimentary cycle of the boron isotopes. GEOCHIM COSMOCHIM ACTA 51, 1939–49.Google Scholar
Staatz, M. H., Murata, K. J.&Glass, J. J. 1955. Variation of composition and physical properties of tourmaline with its position in the pegmatite. AM MINERAL 40, 789804.Google Scholar
Stewart, D. B. 1963. Petrogenesis and mineral assemblages of lithiumrich pegmatites [abstract], GEOL SOC AM SPEC PAP 76, 159.Google Scholar
Stewart, D. B. 1978. Petrogenesis of lithium-rich pegmatites. AM MINERAL 63, 970–80.Google Scholar
Swanson, S. E.&Fenn, P. M. 1986. Quartz crystallization in igneous rocks. AM MINERAL 71, 331–42.Google Scholar
Swihart, G. H.&Moore, P. B. 1989. A reconnaissance of the boron isotopic composition of tourmaline. GEOCHIM COSMOCHIM ACTA 53, 911–6.Google Scholar
Taylor, B. E.&Friedrichsen, H. 1983. Light stable isotope systematics of granitic pegmatites from North America and Norway. ISOTOPE GEOSCI 1, 127–67.Google Scholar
Taylor, B. E., Foord, E. E.&Friedrichsen, H. 1979. Stable isotope and fluid inclusion studies of gem-bearing granitic pegmatiteaplite dikes, San Diego Co., California. CONTRIB MINERAL PETROL 68, 187205.Google Scholar
Taylor, R. P., Fallick, A. E.&Breaks, F. W. 1992. Volatile evolution in Archean rare-element granitic pegmatites: evidence from the hydrogen isotopic compositions of channel H2O in beryl. CAN MINERAL 30, 877–93.Google Scholar
Teertstra, D. K., Cerny, P.&Chapman, R. 1992. Compositional heterogeneity of pollucite from High Grade dyke, Maskwa Lake, southeastern Manitoba. CAN MINERAL 30, 687–97.Google Scholar
Teertstra, D. K., Sherriff, B. L., Xu, Z.&Cerny, P. 1993. MAS and DOR NMR study of Al–Si order in the analcime–pollucite series. CAN MINERAL 32, 6980.Google Scholar
Thomas, A. V.&Spooner, E. T. C. 1988. Fluid inclusions in the system H2O–CH4–NaCl–CO2 from metasomatic tourmaline within the border unit of the Tanco zoned granitic pegmatite, S.E. Manitoba. GEOCHIM COSMOCHIM ACTA 52, 1065–75.Google Scholar
Thomas, A. V., Bray, C. J.&Spooner, E. T. C. 1988. A discussion of the Jahns–Burnham proposal for the formation of zoned granitic pegmatites using solid–liquid–vapour inclusions from the Tanco pegmatite S.E. Manitoba, Canada. TRANS ROY SOC EDINBURGH EARTH SCI 79, 299315.Google Scholar
Tomascak, P. B.&Cerny, P. 1992. Mineralogy and geochemistry of phosphorus in the Aylmer Lake pegmatite field N.W.T. GAC-MAC PROGR ABSTR 17, A110.Google Scholar
Tomascak, P. B., Lynton, S. J., Walker, R. J.&Krogstad, E. J. 1995. Li isotope geochemistry of the Tin Mountain pegmatite, Black Hills, South Dakota [abstract]. In Brown, M.&Picolli, P. M. (eds) The origin of granites and related rocks, Third Hutton Symposium. US GEOL SURV CIRC 1129, 151–2.Google Scholar
Trueman, D. L.&Cerny, P. 1982. Exploration for rare-element granitic pegmatites. In Cerny, P. (ed.) Granitic pegmatites in science and industry. MINERAL ASSOC CAN SHORT COURSE HANDB 8, 463–93.Google Scholar
Walker, R. J., Hanson, G. N., Papike, J. J.&O'Neil, J. R. 1986a. Nd, O, and Sr isotopic constraints on the origin of Precambrian rocks, southern Black Hills, South Dakota. GEOCHIM COSMOCHIM ACTA 50, 2833–46.Google Scholar
Walker, R. J., Hanson, G. N., Papike, J. J., O'Neil, J. R.&Laul, J. C. 1986b. Internal evolution of the Tin Mountain pegmatite, Black Hills, South Dakota. AM MINERAL 71, 440–59.Google Scholar
Walker, R. J., Hanson, G. N.&Papike, J. J. 1992. Trace element constraints on pegmatite genesis: Tin Mountain pegmatite, Black Hills, South Dakota. CONTRIB MINERAL PETROL 101, 290300.Google Scholar
Webber, K. L., Falster, A. U., Simmons, Wm. B.&Foord, E. E. 1995. Origin of ‘line rock’ in composite aplite–pegmatite dikes (abstr.). GEOL SOC AM ABSTR PROGR 27, A411.Google Scholar
Webster, J. D. 1992a. Fluid–melt interactions involving Cl-rich granites: experimental study from 2 to 8 kbar. GEOCHIM COSMOCHIM ACTA 56, 659–78.Google Scholar
Webster, J. D. 1992b. Water solubility and Cl partitioning in Cl-rich granitic systems: effects of melt composition at 2 kbar and 800°C. GEOCHIM COSMOCHIM ACTA 56, 679–87.Google Scholar
Webster, J. D.&Holloway, J. R. 1990. Partitioning of F and Cl between magmatic fluids and highly evolved granitic magmas. In Stein, H. J.&Hannah, J. L. (eds) Ore-bearing granite systems. GEOL SOC AM SPEC PAP 246, 2134.Google Scholar
Whalen, J. B., Currie, K. L.&Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination, and petrogenesis. CONTRIB MINERAL PETROL 95, 407–19.Google Scholar
Whitworth, M. P. 1992. Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland. MINERAL MAG 56, 7583.Google Scholar
Wise, M. A.&Cerny, P. 1996. The crystal chemistry of the tapiolite series. CAN MINERAL 34, 631–47.Google Scholar
Wobus, R. A.&Anderson, R. S. 1978. Petrology of the intrusive center at Lake George, southern Front Range, Colorado. J RES US GEOL SURV 6, 8194.Google Scholar
Wolf, M. B.&London, D. 1993. Preliminary results of HFS and RE element solubility experiments in ‘granites’ as a function of B and P [abstract]. EOS TRANS AM GEOPHYS UNION 74, 343.Google Scholar
Wolf, M. B.&London, D. 1994. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. GEOCHIM COSMOCHIM ACTA 58, 4127–45.Google Scholar
Wolf, M. B.&London, D. 1995. Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: differential apatite, monazite, and xenotime solubilities during anatexis. AM MINERAL 80, 765–75.Google Scholar
Wolf, M. B., London, D.&Morgan, G. B. VI 1994. Effects of boron on the solubility of cassiterite and tantalite in granitic liquids [abstract]. GEOL SOC AM ABSTR PROGR 26, A450.Google Scholar
Wood, S. A.&William-Jones, A. E. 1993. Theoretical studies of the alteration of spodumene, petalite, eucryptite, and pollucite in granitic pegmatites: exchange reactions with alkali feldspars. CONTRIB MINERAL PETROL 1114, 255–63.Google Scholar
Wyllie, P. J. 1963. Applications of high pressure studies to the earth sciences. In Bradley, R. S. (ed.) High pressure physics and chemistry. Vol. 2, 189. New York: Academic Press.Google Scholar
Yurimoto, H., Kurosawa, M.&Sueno, S. 1989. Hydrogen analysis in quartz crystals and quartz glasses by secondary ion mass spectrometry. GEOCHIM COSMOCHIM ACTA 53, 751–5.Google Scholar