Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T01:13:43.222Z Has data issue: true hasContentIssue false

THE ET INTERVIEW: BENEDIKT M. PÖTSCHER

Published online by Cambridge University Press:  18 September 2024

Manfred Deistler*
Affiliation:
University of Technology Vienna
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
ET INTERVIEW
Copyright
© The Author(s), 2024. Published by Cambridge University Press

References

REFERENCES

Anderson, T. W. (1971). The statistical analysis of time series . Wiley.Google Scholar
Andrews, D. W. K. (1987). Consistency in nonlinear econometric models: A generic uniform law of large numbers. Econometrica , 55, 14651471.Google Scholar
Andrews, D. W. K. (1992). Generic uniform convergence. Econometric Theory , 8, 241257.Google Scholar
Andrews, D. W. K., & Guggenberger, P. (2009). Hybrid and size-corrected subsampling methods. Econometrica , 77, 721762.Google Scholar
Andrews, D. W. K., & Ploberger, W. (1996). Testing for serial correlation against an ARMA $\left(1,1\right)$ process. Journal of the American Statistical Association, 91, 13311342.Google Scholar
Bachoc, F., Leeb, H., & Pötscher, B. M. (2019). Valid confidence intervals for post-model-selection predictors. Annals of Statistics , 47, 14751504.Google Scholar
Bates, C. E., & White, H. (1985). A unified theory of consistent estimation for parametric models. Econometric Theory , 1, 151178.Google Scholar
Bauer, P., Pötscher, B. M., & Hackl, P. (1988). Model selection by multiple test procedures. Statistics , 19, 3944.Google Scholar
Berk, R., Brown, L., Buja, A., Zhang, K., & Zhao, L. (2013). Valid post-selection inference. Annals of Statistics , 41, 802837.Google Scholar
Bickel, P. J. (1982). On adaptive estimation. Annals of Statistics , 10, 647671.Google Scholar
Birman, M., & Solomjak, M. Z. (1967). Piecewise polynomial approximations of functions of classes $W^{\alpha}_{p} $ . Matematicheskii Sbornik , 73(115), 331355.Google Scholar
Blough, S. R. (1988). On the impossibility of testing for unit roots and cointegration in finite samples. Working Paper. Johns Hopkins University.Google Scholar
Bomze, I. M., & Pötscher, B. M. (1989). Game theoretical foundations of evolutionary stability . Lecture Notes in Economics and Mathematical Systems, 324. Springer-Verlag.Google Scholar
Campbell, J. Y., & Mankiw, N. G. (1987a). Are output fluctuations transitory? Quarterly Journal of Economics , 102, 857880.Google Scholar
Campbell, J. Y., & Mankiw, N. G. (1987b). Permanent and transitory components in macroeconomic fluctuations. American Economic Review Papers and Proceeedings , 77, 111117.Google Scholar
Christiano, L. J., & Eichenbaum, M. (1990). Unit roots in real GNP: Do we know and do we care? Carnegie-Rochester Conference Series on Public Policy , 32, 762.Google Scholar
Cochrane, J. H. (1988). How big is the random walk in GNP? Journal of Political Economy , 96, 893920.Google Scholar
Dahlhaus, R., & Pötscher, B. M. (1989). Convergence results for maximum likelihood type estimators in multivariable ARMA models II. Journal of Multivariate Analysis , 30, 241244.Google Scholar
Deistler, M., Dunsmuir, W., & Hannan, E. J. (1978). Vector linear time series models: Corrections and extensions. Advances in Applied Probability , 10, 360372.Google Scholar
Deistler, M., & Pötscher, B. M. (1984). The behaviour of the likelihood function for ARMA models. Advances in Applied Probability , 16, 843866.Google Scholar
Diebold, F., & Rudebusch, G. (1989). Long memory and persistence in aggregate output. Journal of Monetary Economics , 24, 189209.Google Scholar
Domowitz, I., & White, H. (1982). Misspecified models with dependent observations. Journal of Econometrics , 20, 3558.Google Scholar
Dunsmuir, W., & Hannan, E. J. (1976). Vector linear time series models. Advances in Applied Probability , 8, 339364.Google Scholar
Ensor, K. B., & Newton, H. J. (1988). The effect of order estimation on estimating the peak frequency of an autoregressive spectral density. Biometrika , 75, 587589.Google Scholar
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association , 96, 13481360.Google Scholar
Faust, J. (1996). Near observational equivalence and theoretical size problems with unit root tests. Econometric Theory , 12, 724731.Google Scholar
Findley, D. F., Pötscher, B. M., & Wei, C.-Z. (2001). Uniform convergence of sample second moments of families of time series arrays. Annals of Statistics , 29, 815838.Google Scholar
Findley, D. F., Pötscher, B. M., & Wei, C.-Z. (2004). Modeling of time series arrays by multistep prediction or likelihood methods. Journal of Econometrics , 118, 151187.Google Scholar
Gach, F., & Pötscher, B. M. (2011). Nonparametric maximum likelihood density estimation and simulation-based minimum distance estimators. Mathematical Methods of Statistics , 20, 288326.Google Scholar
Hamilton, J. D. (1994). Time series analysis . Princeton University Press.Google Scholar
Hannan, E. J. (1982). Testing for autocorrelation and Akaike’s criterion. Journal of Applied Probability , 19, 403412.Google Scholar
Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, Series B , 41, 190195.Google Scholar
Hauser, M., Pötscher, B. M., & Reschenhofer, E. (1999). Measuring persistence in aggregate output: ARMA models, fractionally integrated ARMA models and nonparametric procedures. Empirical Economics , 24, 243269.Google Scholar
Hoadley, B. (1971). Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case. Annals of Mathematical Statistics , 42, 19771991.Google Scholar
Kabaila, P. (1983). Parameter values of ARMA models minimising the one-step-ahead prediction error when the true system is not in the model set. Journal of Applied Probability , 20, 405408.Google Scholar
Kimura, M. (1982). Molecular evolution, protein polymorphism and the neutral theory . Springer-Verlag.Google Scholar
Kolmogorov, A. N., & Tihomirov, V. M. (1961). $\varepsilon$ -entropy and $\varepsilon$ -capacity of sets in functional spaces. American Mathematical Society Translations , 17, 277364.Google Scholar
Leeb, H., & Pötscher, B. M. (2003). The finite-sample distribution of post-model-selection estimators, and uniform versus non-uniform approximations. Econometric Theory , 19, 100142.Google Scholar
Leeb, H., & Pötscher, B. M. (2005). Model selection and inference: Facts and fiction. Econometric Theory , 21, 2159.Google Scholar
Leeb, H., & Pötscher, B. M. (2006a). Can one estimate the conditional distribution of post-model-selection estimators? Annals of Statistics , 34, 25542591.Google Scholar
Leeb, H., & Pötscher, B. M. (2006b). Performance limits for estimators of the risk or distribution of shrinkage-type estimators, and some general lower risk-bound results. Econometric Theory , 22, 6997. (Correction, ibid., 24, 581–583).Google Scholar
Leeb, H., & Pötscher, B. M. (2008a). Can one estimate the unconditional distribution of post-model-selection estimators? Econometric Theory , 24, 338376.Google Scholar
Leeb, H., & Pötscher, B. M. (2008b). Sparse estimators and the oracle property, or the return of Hodges’ estimator. Journal of Econometrics , 142, 201211.Google Scholar
Leeb, H., & Pötscher, B. M. (2017). Testing in the presence of nuisance parameters: Some comments on tests post-model-selection and random critical values. In Ahmed, S. (Eds.), Big and complex data analysis (pp. 6982). Contributions to Statistics. Springer.Google Scholar
Leeb, H., Pötscher, B. M., & Ewald, K. (2015). On various confidence intervals post-model-selection. Statistical Science , 30, 216227.Google Scholar
Manski, C. F. (1984). Adaptive estimation of nonlinear regression models. Econometric Reviews , 3, 145210.Google Scholar
Nelson, C. R., & Plosser, C. I. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics , 10, 139162.Google Scholar
Newey, W. K. (1991). Uniform convergence in probability and stochastic equicontinuity. Econometrica , 59, 11611167.Google Scholar
Nickl, R. (2003). Asymptotic distribution theory of post-model-selection maximum likelihood estimators. Master’s thesis, University of Vienna.Google Scholar
Nickl, R. (2007). Donsker-type theorems for nonparametric maximum likelihood estimators. Probability Theory and Related Fields , 138, 411449. (Erratum, ibid., 141, 331–332).Google Scholar
Nickl, R., & Pötscher, B. M. (2007). Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type. Journal of Theoretical Probability , 20, 177199.Google Scholar
Nickl, R., & Pötscher, B. M. (2010). Efficient simulation-based minimum distance estimation and indirect inference. Mathematical Methods of Statistics , 19, 327364.Google Scholar
Owen, G. (1968). Game theory . W. B. Saunders Co. Google Scholar
Perron, P., & Ren, L. (2011). On the irrelevance of impossibility theorems: The case of the long-run variance. Journal of Time Series Econometrics, 3, 3(3).Google Scholar
Pötscher, B. M. (1982). Some results on ${\omega}_{\mu }$ -metric spaces. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica, 25, 318. (Correction, ibid., 28, 283).Google Scholar
Pötscher, B. M. (1983). Order estimation in ARMA-models by Lagrangian multiplier tests. Annals of Statistics , 11, 872885. (Correction, ibid., 12, 785).Google Scholar
Pötscher, B. M. (1985a). The behaviour of the Lagrangian multiplier test in testing the orders of an ARMA-model. Metrika , 32, 129150.Google Scholar
Pötscher, B. M. (1985b). Moments and order statistics of extinction times in multitype branching processes and their relation to random selection models. Bulletin of Mathematical Biology , 47, 263272.Google Scholar
Pötscher, B. M. (1987a). Convergence results for maximum likelihood type estimators in multivariable ARMA models. Journal of Multivariate Analysis , 21, 2952.Google Scholar
Pötscher, B. M. (1987b). A generalization of Urysohn’s metrization theorem and its set-theoretic consequences. Studia Scientiarum Mathematicarum Hungarica , 22, 457461.Google Scholar
Pötscher, B. M. (1989). Model selection under nonstationarity: Autoregressive models and stochastic linear regression models. Annals of Statistics , 17, 12571274.Google Scholar
Pötscher, B. M. (1990). Estimation of autoregressive moving-average order given an infinite number of models and approximation of spectral densities. Journal of Time Series Analysis , 11, 165179.Google Scholar
Pötscher, B. M. (1991a). Effects of model selection on inference. Econometric Theory , 7, 163185.Google Scholar
Pötscher, B. M. (1991b). Noninvertibility and pseudo-maximum likelihood estimation of misspecified ARMA models. Econometric Theory , 7, 435449. (Corrigendum, ibid., 10, 811).Google Scholar
Pötscher, B. M. (2002). Lower risk bounds and properties of confidence sets for ill-posed estimation problems with applications to spectral density and persistence estimation, unit roots, and estimation of long memory parameters. Econometrica , 70, 10351065.Google Scholar
Pötscher, B. M. (2006). The distribution of model averaging estimators and an impossibility result regarding its estimation. IMS Lecture Notes - Monograph Series , 52, 113129.Google Scholar
Pötscher, B. M. (2009). Confidence sets based on sparse estimators are necessarily large. Sankhya, 71-A, 118.Google Scholar
Pötscher, B. M., & Leeb, H. (2009). On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding. Journal of Multivariate Analysis , 100, 20652082.Google Scholar
Pötscher, B. M., & Preinerstorfer, D. (2018). Controlling the size of autocorrelation robust tests. Journal of Econometrics , 207, 406431.Google Scholar
Pötscher, B. M., & Preinerstorfer, D. (2019). Further results on size and power of heteroskedasticity and autocorrelation robust tests, with an application to trend testing. Electronic Journal of Statistics , 13, 38933942.Google Scholar
Pötscher, B. M., & Preinerstorfer, D. (2021). Valid heteroskedasticity robust testing. Econometric Theory. Published online by Cambridge University Press: 11 September 2023, 153.Google Scholar
Pötscher, B. M., & Preinerstorfer, D. (2023). How reliable are bootstrap-based heteroskedasticity robust tests? Econometric Theory , 39, 789847.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1986a). A class of partially adaptive one-step $M$ -estimators for the nonlinear regression model with dependent observations. Journal of Econometrics , 32, 219251.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1986b). Consistency in nonlinear econometrics: A generic uniform law of large numbers and some comments on recent results. Working Paper No 86-9. Department of Economics, University of Maryland.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1989). A uniform law of large numbers for dependent and heterogeneous data processes. Econometrica , 57, 675683.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1991a). Basic structure of the asymptotic theory in dynamic nonlinear econometric models. I. Consistency and approximation concepts. Econometric Reviews , 10, 125216.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1991b). Basic structure of the asymptotic theory in dynamic nonlinear econometric models II. Asymptotic normality.. Econometric Reviews , 10, 253357.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1994a). Generic uniform convergence and equicontinuity concepts for random functions: An exploration of the basic structure. Journal of Econometrics , 60, 2363.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1994b). On the formulation of uniform laws of large numbers: A truncation approach. Statistics , 25, 343360.Google Scholar
Pötscher, B. M., & Prucha, I. R. (1997). Dynamic nonlinear econometric models: Asymptotic theory . Springer-Verlag.Google Scholar
Pötscher, B. M., & Schneider, U. (2009). On the distribution of the adaptive LASSO estimator. Journal of Statistical Planning and Inference , 139, 27752790.Google Scholar
Pötscher, B. M., & Schneider, U. (2010). Confidence sets based on penalized maximum likelihood estimators in Gaussian regression. Electronic Journal of Statistics , 4, 334360.Google Scholar
Pötscher, B. M., & Schneider, U. (2011). Distributional results for thresholding estimators in high-dimensional Gaussian regression models. Electronic Journal of Statistics , 5, 18761934.Google Scholar
Pötscher, B. M., & Srinivasan, S. (1994). A comparison of order estimation procedures for ARMA models. Statistica Sinica , 4, 2950.Google Scholar
Preinerstorfer, D. (2017). Finite sample properties of tests based on prewhitened nonparametric covariance estimators. Electronic Journal of Statistics , 11, 20972167.Google Scholar
Preinerstorfer, D., & Pötscher, B. M. (2016). On size and power of heteroskedasticity and autocorrelation robust tests. Econometric Theory , 32, 261358.Google Scholar
Preinerstorfer, D., & Pötscher, B. M. (2017). On the power of invariant tests for hypotheses on a covariance matrix. Econometric Theory , 33, 168.Google Scholar
Prucha, I. R., & Kelejian, H. H. (1984). The structure of simultaneous equation estimators: A generalization towcards nonnormal disturbances. Econometrica , 52, 721736.Google Scholar
Schuster, P., & Sigmund, K. (1984). Random selection – a simple model based on linear birth and death processes. Bulletin of Mathematical Biology , 46, 1117.Google Scholar
Sen, P. K. (1979). Asymptotic properties of maximum likelihood estimators based on conditional specification. Annals of Statistics , 7, 10191033.Google Scholar
Sewastjanow, B. A. (1974). Verzweigungsprozesse , vol. 34 of Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien . Akademie-Verlag, Berlin.Google Scholar
Tanaka, K., & Satchell, S. E. (1989). Asymptotic properties of the maximum-likelihood and nonlinear least-squares estimators for noninvertible moving average models. Econometric Theory , 5, 333353.Google Scholar
White, H. (1980). Nonlinear regression on cross-section data. Econometrica , 48, 721746.Google Scholar
White, H., & Domowitz, I. (1984). Nonlinear regression with dependent observations. Econometrica , 52, 143161.Google Scholar
Willard, S. (1970). General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.Google Scholar