Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T03:48:50.404Z Has data issue: false hasContentIssue false

The evidence for the airborne spread of Newcastle disease

Published online by Cambridge University Press:  15 May 2009

M. Hugh-Jones
Affiliation:
Central Veterinary Laboratory, Weybridge, Surrey
W. H. Allan
Affiliation:
Central Veterinary Laboratory, Weybridge, Surrey
F. A. Dark
Affiliation:
Microbiological Research Establishment, Porton Down, Salisbury, Wilts.
G. J. Harper
Affiliation:
Microbiological Research Establishment, Porton Down, Salisbury, Wilts.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Newcastle disease virus has been shown to survive when airborne in small particles, both in the laboratory and in the open air. Field outbreaks have been studied and viable virus has been recovered from the open air short distances downwind of infected premises. Vaccination of birds leads to a great reduction in the amount of virus liberated into the air.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

References

REFERENCES

Anderson, J. D. (1966). Biochemical studies of lethal processes in Escherichia coli. Journal of General Microbiology 45, 303.CrossRefGoogle Scholar
Andrewes, C. H. & Allison, A. C. (1961). Newcastle disease as a model for studies of experimental epidemiology. Journal of Hygiene 59, 285.CrossRefGoogle Scholar
Delay, P. D., Deome, K. & Bankowski, R. A. (1948). Recovery of Pneumoencephalitis (Newcastle) virus from the air of poultry house containing infected birds. Science, New York 107, 474.CrossRefGoogle ScholarPubMed
Druett, H. A., Henderson, D. W., Packman, L. P. & Peacock, S. (1953). Studies on respiratory infection. I. The influence of particle size on respiratory infection with anthrax spores. Journal of Hygiene 51, 359.CrossRefGoogle ScholarPubMed
Druett, H. A. & May, K. R. (1968). Unstable germicidal pollutant in rural air. Nature, London 220, 100.CrossRefGoogle ScholarPubMed
Druett, H. A. (1969). A mobile form of the Henderson apparatus. Journal of Hygiene 67, 437.CrossRefGoogle ScholarPubMed
Druett, H. A. (1971). A safe method of exposing microthreads to the open air. Journal of Applied Bacteriology 34, 100.CrossRefGoogle Scholar
Elsworth, R., Miller, G. A., Whitaker, A. R., Kitching, D. & Sayer, P. (1968). Production of Escherichia coli as a source of nucleic acid. Journal of Applied Chemistry 17, 157.CrossRefGoogle Scholar
Finney, D. J. (1964). Statistical Method in Biological Assay, 2nd ed.London: C. Griffin & Co.Google Scholar
Goldberg, L. J., Watkins, H. M. S., Boerke, E. E. & Chatigny, M. A. (1958). The use of a rotating drum for the study of aerosols over extended periods of time. American Journal of Hygiene 68, 85.Google Scholar
Idani, J. A. & Seetharaman, C. (1947). Transmission of Ranikhet disease of fowls. Indian Journal of Veterinary Science 17, 167.Google Scholar
Lancaster, J. E. (1966). Newcastle Disease: A Review 1926–1964. Ottawa: Canadian Department of Agriculture (Monograph no. 3).Google Scholar
May, K. R. (1945).The cascade impactor, an instrument for sampling course aerosols. Journal of Scientific Instrumentation 22, 187.CrossRefGoogle Scholar
May, K. R. (1966). Multistage liquid impinger. Bacteriological Reviews 30, 559.CrossRefGoogle ScholarPubMed
May, K. R. & Druett, H. A. (1968). A microthread technique for studying the viability of microbes in a simulated airborne state. Journal of General Microbiology 51, 353.CrossRefGoogle Scholar
May, K. R., Druett, H. A. & Packman, L. P. (1969). The toxicity of open air to a variety of microorganisms. Nature, London 221, 1146.CrossRefGoogle ScholarPubMed
May, K. R. & Harper, G. J. (1957). The efficiency of various liquid impinger samplers in bacterial aerosols. British Journal of Industrial Medicine 14, 287.Google ScholarPubMed
National Research Council (1971). Methods for Examining Poultry Biologies for Identifying and Quantifying Avian Pathogens, 3rd ed.Washington: National Academy of Science - National Research Council.Google Scholar
Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorological Magazine, London 90, 33.Google Scholar
Smith, C. V. (1964). Some evidence for the windborne spread of fowl pest. Meteorological Magazine, London 93, 257.Google Scholar
Zalko-Titanenko, V. P. (1965). A study of diphtheria bacillus aerosols. Zhurnal mikrobio-logii epidemiologii: immunologii 2, 68.Google Scholar