Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T22:35:01.974Z Has data issue: false hasContentIssue false

Self-similar hyperbolicity

Published online by Cambridge University Press:  02 May 2017

ALFONSO ARTIGUE*
Affiliation:
Departamento de Matemática y Estadística del Litoral, Universidad de la República, Gral. Rivera 1350, Salto, Uruguay email artigue@unorte.edu.uy

Abstract

In this paper we consider expansive homeomorphisms of compact spaces with a hyperbolic metric presenting a self-similar behavior on stable and unstable sets. Several applications are given related to Hausdorff dimension, entropy, intrinsically ergodic measures and the transitivity of expansive homeomorphisms with canonical coordinates.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, N. and Hiraide, K.. Topological Theory of Dynamical Systems. Elsevier, Amsterdam, 1994.Google Scholar
Bowen, R.. Topological entropy and Axiom A. Proc. Sympos. Pure Math. 14 (1970), 2342.Google Scholar
Bowen, R.. Periodic points and measures for Axiom A diffeomorphisms. Trans. Amer. Math. Soc. 154 (1971), 377397.Google Scholar
Bowen, R.. Some systems with unique equilibrium states. Math. Systems Theory 8 (1975), 193202.Google Scholar
Brin, M. and Stuck, G.. Introduction to Dynamical Systems. Cambridge University Press, Cambridge, 2003.Google Scholar
Coven, E. M. and Reddy, W. L.. Positively Expansive Maps of Compact Manifolds (Lecture Notes in Mathematics, 819) . Springer, Berlin, 1980, pp. 96110.Google Scholar
Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics, 527) . Springer, Berlin, 1976.Google Scholar
Dovbysh, S. A.. Optimal Lyapunov metrics of expansive homeomorphisms. Izv. Math. 70 (2006), 883929.Google Scholar
Falconer, K.. Fractal Geometry. John Wiley, Chichester, 1990.Google Scholar
Fathi, A.. Expansivity, hyperbolicity and Hausdorff dimension. Comm. Math. Phys. 126 (1989), 249262.Google Scholar
Fisher, T.. Hyperbolic sets with non-empty interior. Discrete Contin. Dyn. Syst. 15 (2006), 433446.Google Scholar
Franks, J. and Robinson, C.. A quasi-Anosov diffeomorphism that is not Anosov. Trans. Amer. Math. Soc. 223 (1976), 267278.Google Scholar
Fried, D.. Métriques naturelles sur les espaces de Smale. C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), 7779.Google Scholar
Fried, D.. Finitely presented dynamical systems. Ergod. Th. & Dynam. Sys. 7 (1987), 489507.Google Scholar
Fujita, C., Kato, H. and Matsumoto, M.. Fractal metrics of Ruelle expanding maps and expanding ratios. Topology Appl. 157 (2010), 615628.Google Scholar
Hamenstadt, U.. A new description of the Bowen–Margulis measure. Ergod. Th. & Dynam. Sys. 9 (1989), 455464.Google Scholar
Hasselblatt, B. and Katok, A.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.Google Scholar
Hiraide, K.. Expansive homeomorphisms of compact surfaces are pseudo-Anosov. Osaka J. Math. 27 (1990), 117162.Google Scholar
Hurewicz, W. and Wallman, H.. Dimension Theory. Princeton University Press, Princeton, NJ, 1948.Google Scholar
Keynes, H. and Robertson, J.. Generators for topological entropy and expansivity. Math. Systems Theory 3 (1969), 5159.Google Scholar
Lewowicz, J.. Expansive homeomorphisms of surfaces. Bol. Soc. Bras. Mat. 20 (1989), 113133.Google Scholar
Mañé, R.. Expansive homeomorphisms and topological dimension. Trans. Amer. Math. Soc. 252 (1979), 313319.Google Scholar
Mañé, R.. Ergodic Theory and Differentiable Dynamics. Springer, Berlin, 1983.Google Scholar
Margulis, G. A.. Certain measures associated with U-flows on compact manifolds. Funct. Anal. Appl. 4 (1970), 5567.Google Scholar
Nadler, S. Jr. Continuum Theory (Pure and Applied Mathematics, 158) . Marcel Dekker, New York, 1992.Google Scholar
Pesin, Y.. Dimension Theory in Dynamical Systems. University of Chicago, Chicago, IL, 1997.Google Scholar
Pesin, Y. and Weiss, H.. On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann–Ruelle conjecture. Comm. Math. Phys. 182 (1996), 105153.Google Scholar
Reddy, W. L.. Expanding maps on compact metric spaces. Topology Appl. 13 (1982), 327334.Google Scholar
Reddy, W. L.. Expansive canonical coordinates are hyperbolic. Topology Appl. 15 (1983), 205210.Google Scholar
Ruelle, D.. Thermodynamic Formalism, 2nd edn. Cambridge University Press, Cambridge, 2004.Google Scholar
Sakai, K.. Hyperbolic metrics of expansive homeomorphisms. Topology Appl. 63 (1995), 263266.Google Scholar
Sakai, K.. Shadowing properties of L-hyperbolic homeomorphisms. Topology Appl. 112 (2001), 229243.Google Scholar
Sakai, K.. Various shadowing properties for positively expansive maps. Topology Appl. 131 (2003), 1531.Google Scholar
Sinai, Ya. G.. Markov partitions and C-diffeomorphisms. Funct. Anal. Appl. 2 (1968), 6182.Google Scholar
Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. (N.S.) 73 (1967), 747817.Google Scholar
Walters, P.. On the pseudo orbit tracing property and its relationship to stability. The Structure of Attractors in Dynamical Systems (Lecture Notes in Mathematics, 668) . Springer, Berlin, 1978, pp. 231244.Google Scholar
Weiss, B.. Intrinsically ergodic systems. Bull. Amer. Math. Soc. 76 (1970), 12261269.Google Scholar