Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T13:25:26.197Z Has data issue: false hasContentIssue false

On conjugations of circle homeomorphisms with two break points

Published online by Cambridge University Press:  30 November 2012

HABIBULLA AKHADKULOV
Affiliation:
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia (email: akhadkulov@yahoo.com)
AKHTAM DZHALILOV
Affiliation:
Faculty of Mathematics and Mechanics, Samarkand State University, Boulevard st. 15, 703004 Samarkand, Uzbekistan (email: a_dzhalilov@yahoo.com)
DIETER MAYER
Affiliation:
Institut für Theoretische Physik, TU Clausthal, Leibnizstraße 10, D-38678 Clausthal-Zellerfeld, Germany (email: dieter.mayer@tu-clausthal.de)

Abstract

Let fiC2+α(S1∖{ai,bi}), α>0,i=1,2, be circle homeomorphisms with two break points ai,bi, that is, discontinuities in the derivative Dfi, with identical irrational rotation number ρ and μ1([a1,b1])=μ2([a2,b2]), where μi are the invariant measures of fi,i=1,2. Suppose that the products of the jump ratios of Df1 and Df2do not coincide, that is, Df1 (a1 −0)/Df1 (a1 +0)⋅Df1 (b1 −0)/Df1 (b1 +0)≠Df2(a2−0)/Df2(a2+0)⋅Df2(b2−0)/Df2(b2+0) . Then the map ψ conjugating f1 and f2 is a singular function, that is, it is continuous on S1, but (x)=0 almost everywhere with respect to Lebesgue measure.

Type
Research Article
Copyright
©2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnol’d, V. I.. Small denominators: I. Mappings from the circle onto itself. Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 2186.Google Scholar
[2]Denjoy, A.. Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11 (1932), 333375.Google Scholar
[3]Dzhalilov, A. A. and Khanin, K. M.. On invariant measure for homeomorphisms of a circle with a point of break. Funct. Anal. Appl. 32(3) (1998), 153161.Google Scholar
[4]Dzhalilov, A. A. and Liousse, I.. Circle homeomorphisms with two break points. Nonlinearity 19 (2006), 19511968.Google Scholar
[5]Dzhalilov, A. A., Liousse, I. and Mayer, D.. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete Contin. Dyn. Syst. 24(2) (2009), 381403.Google Scholar
[6]Dzhalilov, A. A., Akin, H. and Temir, S.. Conjugations between circle maps with a single break point. J. Math. Anal. Appl. 366 (2010), 110.CrossRefGoogle Scholar
[7]Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. G.. Ergodic Theory. Springer, Berlin, 1982.CrossRefGoogle Scholar
[8]Herman, M.. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. Inst. Hautes Études Sci. 49 (1979), 225234.CrossRefGoogle Scholar
[9]Katznelson, Y. and Ornstein, D.. The absolute continuity of the conjugation of certain diffeomorphisms of the circle. Ergod. Th. & Dynam. Sys. 9 (1989), 681690.CrossRefGoogle Scholar
[10]Khanin, K. M. and Sinai, Ya. G.. Smoothness of conjugacies of diffeomorphisms of the circle with rotations. Russian Math. Surveys 44 (1989), 6999, translation of Uspekhi. Mat. Nauk 44, 57–82 (1989).Google Scholar
[11]Khanin, K. M. and Vul, E. B.. Circle homeomorphisms with weak discontinuities. Adv. Sov. Math. 3 (1993), 5798.Google Scholar
[12]Khanin, K. M. and Khmelev, D.. Renormalizations and rigidity theory for circle homeomorphisms with singularities of the break type. Comm. Math. Phys. 235 (2003), 69124.Google Scholar
[13]Liousse, I.. Nombre de rotation, mesures invariantes et ratio set des homéomorphisms affines par morceaux du cercle. Ann. Inst. Fourier 55 (2005), 431482.Google Scholar
[14]Moser, J.. A rapid convergent iteration method and non-linear differential equations. II. Ann. Sc. Norm. Super. Pisa 20(3) (1966), 499535.Google Scholar
[15]de Melo, W. and van Strien, S.. One Dimensional Dynamics. Springer, Berlin, 1993, pp. 325.CrossRefGoogle Scholar
[16]Stein, M.. Groups of piecewise linear homeomorphisms. Trans. Amer. Math. Soc. 32 (1992), 477514.Google Scholar
[17]Teplinskii, A. Yu. and Khanin, K. M.. Rigidity for circle diffeomorphisms with simgularities. Russian Math. Surveys 759(2) (2004), 329353, translation of Uspekhi. Mat. Nauk 59(2), 137–160 (2004).CrossRefGoogle Scholar
[18]Yoccoz, J. C.. Il n’y a pas de contre-exemple de Denjoy analytique. C. R. Acad. Sci. Paris 298(7) (1984), 141144.Google Scholar