Article contents
Lower semicontinuity in BV of quasiconvex integrals withsubquadratic growth
Published online by Cambridge University Press: 14 March 2013
Abstract
A lower semicontinuity result in BV is obtained for quasiconvexintegrals with subquadratic growth. The key steps in this proof involve obtainingboundedness properties for an extension operator, and a precise blow-up technique thatuses fine properties of Sobolev maps. A similar result is obtained by Kristensen in[Calc. Var. Partial Differ. Equ. 7 (1998) 249–261], wherethere are weaker asssumptions on convergence but the integral needs to satisfy a strongergrowth condition.
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 19 , Issue 2 , April 2013 , pp. 555 - 573
- Copyright
- © EDP Sciences, SMAI, 2013
References
Acerbi, E. and Dal Maso, G., New lower semicontinuity
results for polyconvex integrals. Calc. Var. Partial
Differ. Equ.
2 (1994) 329–371.
Google Scholar
Ambrosio, L. and Dal Maso, G., On the relaxation in
BV(Ω;Rm) of quasi-convex
integrals. J. Funct. Anal.
109 (1992) 76–97.
Google Scholar
L. Ambrosio, N. Fusco, and D. Pallara, Functions of
bounded variation and free discontinuity problems, Oxford Mathematical
Monographs. The Clarendon Press Oxford University Press, New York (2000).
Ball, J.M. and Murat, F., W 1,
p-quasiconvexity and variational problems for multiple
integrals. J. Funct. Anal.
58 (1984)
225–253. Google Scholar
Bouchitté, G., Fonseca, I. and Malý, J., The effective bulk energy of the
relaxed energy of multiple integrals below the growth exponent.
Proc. of R. Soc. Edinburgh Sect. A
128 (1998)
463–479. Google Scholar
Carbone, L. and De Arcangelis, R., Further results on
Γ-convergence and lower semicontinuity of integral functionals
depending on vector-valued functions. Ric.
Mat.
39 (1990) 99–129.
Google Scholar
M. Carozza, J. Kristensen and A. Passarelli di
Napoli, Lower semicontinuity in a borderline case. Preprint (2008).
Černý, R., Relaxation of an area-like
functional for the function
\hbox{$\frac x{\vert x\vert }$}
.
Calc. Var. Partial Differ. Equ.
28 (2007)
203–216. Google Scholar
B. Dacorogna, Direct methods in the calculus of
variations. Appl. Math. Sci.
78 (1989).
Dacorogna, B., Fonseca, I., Malý, J. and Trivisa, K., Manifold constrained
variational problems. Calc. Var. Partial Differ.
Equ.
9 (1999) 185–206.
Google Scholar
Fonseca, I. and Malý, , J.
Relaxation of multiple integrals below the growth exponent.
Ann. Inst. Henri Poincaré, Anal. Non Linéaire
14 (1997)
309–338. Google Scholar
Fonseca, I. and Malý, J., From Jacobian to Hessian:
distributional form and relaxation. Riv. Mat. Univ.
Parma
4 (2005) 45–74.
Google Scholar
Fonseca, I. and Marcellini, P., Relaxation of multiple
integrals in subcritical Sobolev spaces. J. Geom.
Anal.
7 (1997) 57–81.
Google Scholar
Fonseca, I. and Müller, S., Quasi-convex integrands and
lower semicontinuity in L 1.
SIAM J. Math. Anal.
23 (1992)
1081–1098. Google Scholar
Fonseca, I. and Müller, S., Relaxation of quasiconvex
functionals in BV(Ω, Rp) for
integrands f(x, u, ∇u).
Arch. Ration. Mech. Anal.
123 (1993) 1–49.
Google Scholar
Fonseca, , I.
Leoni, G. and Müller, , S.
𝒜 quasiconvexity:
weak-star convergence and the gap. Ann. Inst. Henri
Poincaré, Anal. Non Linéaire
21 (2004)
209–236. Google Scholar
Greco, L., Iwaniec, T. and Moscariello, G., Limits of the improved
integrability of the volume forms. Indiana Univ. Math.
J.
44 (1995)
305–339. Google Scholar
T. Iwaniec and G. Martin, Geometric function theory
and non-linear analysis. Oxford Mathematical Monographs. The Clarendon
Press Oxford University Press, New York (2001).
Kristensen, , J.
Lower semicontinuity of quasi-convex integrals in
BV(Ω;Rm).
Calc. Var. Partial Differ. Equ.
7 (1998) 249–261.
Google Scholar
Malý, J., Weak lower semicontinuity of
polyconvex integrals. Proc. of R. Soc. Edinburgh Sect.
A
123 (1993)
681–691. Google Scholar
J. Malý, Weak lower semicontinuity of polyconvex
and quasiconvex integrals. Preprint (1993).
Malý, J., Lower semicontinuity of
quasiconvex integrals. Manusc. Math.
85 (1994)
419–428. Google Scholar
Marcellini, , P.
On the definition and the lower semicontinuity of certain quasiconvex
integrals. Ann. Inst. Henri Poincaré, Anal. Non
Linéaire
3 (1986) 391–409.
Google Scholar
Meyers, N.G., Quasi-convexity and lower
semi-continuity of multiple variational integrals of any order.
Trans. Amer. Math. Soc.
119 (1965)
125–149. Google Scholar
Müller, S., On quasiconvex functions which
are homogeneous of degree 1. Indiana Univ. Math.
J.
41 (1992)
295–301. Google Scholar
Rindler, F., Lower semicontinuity and Young
measures in BV without Alberti’s rank-one theorem. Adv.
Calc. Var.
5 (2012) 127–159.
Google Scholar
W. Rudin, Real and complex
analysis, 3rd edition, McGraw-Hill Book Co., New York (1987).
Serrin, J., A new definition of the integral
for nonparametric problems in the calculus of variations.
Acta Math.
102 (1959) 23–32.
Google Scholar
Serrin, J., On the definition and properties
of certain variational integrals. Trans. Amer. Math.
Soc.
101 (1961)
139–167. Google Scholar
Šverák, V., Quasiconvex functions with
subquadratic growth. Proc. of R. Soc. London
A
433 (1991)
723–725. Google Scholar
Zhang, K., A construction of quasiconvex
functions with linear growth at infinity. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4)
19 (1992)
313–326. Google Scholar
W.P. Ziemer, Weakly differentiable functions,
Sobolev spaces and functions of bounded variation. Graduate Texts in
Mathematics
120 (1989).
- 4
- Cited by