No CrossRef data available.
Article contents
Asymptotic behaviour of stochastic quasi dissipative systems
Published online by Cambridge University Press: 15 August 2002
Abstract
We prove uniqueness of the invariant measure and the exponential convergence to equilibriumfor a stochastic dissipative system whose drift is perturbed by a bounded function.
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 8: A tribute to JL Lions , 2002 , pp. 587 - 602
- Copyright
- © EDP Sciences, SMAI, 2002
References
J.M. Bismut, Large deviations and the Malliavin Calculus. Birkhäuser (1984).
H. Brézis, Opérateurs maximaux monotones. North-Holland, Amsterdam (1973).
Cerrai, S., Hille-Yosida, A theorem for weakly continuous semigroups.
Semigroup Forum
49 (1994) 349-367.
CrossRef
S. Cerrai, Second order PDE's in finite and infinite dimensions. A probabilistic approach. Springer, Lecture Notes in Math. 1762
(2001).
Cerrai, S., Optimal control problems for stochastic reaction-diffusion systems with non Lipschitz coefficients.
SIAM J. Control Optim.
39 (2001) 1779-1816.
CrossRef
S. Cerrai, Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem. SIAM J. Control Optim. (to appear).
G. Da Prato, Stochastic evolution equations by semigroups methods. Centre de Recerca Matematica, Barcelona, Quaderns
11 (1998).
G. Da Prato, A. Debussche and B. Goldys, Invariant measures of non symmetric dissipative stochastic systems. Probab. Theor. Related Fields (to appear).
Da Prato, G., Elworthy, D. and Zabczyk, J., Strong Feller property for stochastic semilinear equations.
Stochastic Anal. Appl.
13 (1995) 35-45.
CrossRef
G. Da Prato and M. Röckner, Singular dissipative stochastic equations in Hilbert spaces, Preprint. S.N.S. Pisa (2001).
G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (1992).
G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems. Cambridge University Press, London Math. Soc. Lecture Notes
229 (1996).
Da Prato, G. and Zabczyk, J., Differentiability of the Feynman-Kac semigroup and a control application.
Rend. Mat. Accad. Lincei.
8 (1997) 183-188.
E.B. Dynkin, Markov Processes, Vol. I. Springer-Verlag (1965).
K.D. Elworthy, Stochastic flows on Riemannian manifolds, edited by M.A. Pinsky and V. Wihstutz. Birkhäuser, Diffusion Processes and Related Problems in Analysis
II (1992) 33-72.
W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag (1993).
Kato, T., Nonlinear semigroups and evolution equations.
J. Math. Soc. Japan
10 (1967) 508-520.
CrossRef
K.R. Parthasarathy, Probability measures on metric spaces. Academic Press (1967).