No CrossRef data available.
Article contents
Uniqueness of stable Meissner state solutionsof the Chern-Simons-Higgs energy
Published online by Cambridge University Press: 21 October 2008
Abstract
For external magnetic field h ex ≤Cε–α , we provethat a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solutionis stable among all vortexless solutions, then it is unique.
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 16 , Issue 1 , January 2010 , pp. 23 - 36
- Copyright
- © EDP Sciences, SMAI, 2008
References
Almeida, L. and Bethuel, F., Topological methods for the Ginzburg-Landau equations.
J. Math. Pures. Appl.
77 (1998) 1–49.
CrossRef
Bethuel, F., Brezis, H. and Hélein, F., Asymptotics for the minimization of a Ginzburg-Landau functional.
Cal. Var. Partial Differ. Equ.
1 (1993) 123–148.
CrossRef
Bonnet, A., Chapman, S.J. and Monneau, R., Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞.
SIAM J. Math. Anal.
31 (2000) 1374–1395.
CrossRef
Choe, K. and Nam, H.-S., Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1) model.
Nonlinear Anal.
66 (2007) 2794–2813.
CrossRef
Kurzke, M. and Spirn, D., Gamma limit of the nonself-dual Chern-Simons-Higgs energy.
J. Funct. Anal.
244 (2008) 535–588.
CrossRef
Kurzke, M. and Spirn, D., Scaling limits of the Chern-Simons-Higgs energy.
Commun. Contemp. Math.
10 (2008) 1–16.
CrossRef
F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications
39. Birkhäuser Boston, Inc., Boston, MA, USA (2000).
E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré, Anal. Non Linéaire
17 (2000) 119–145.
Serfaty, S., Stable configurations in superconductivity: Uniqueness, mulitplicity, and vortex-nucleation.
Arch. Rational Mech. Anal.
149 (1999) 329–365.
CrossRef
D. Spirn and X. Yan, Minimizers near the first critical field for the nonself-dual Chern-Simons-Higgs energy. Calc. Var. Partial Differ. Equ. (to appear).
Tarantello, G., Uniqueness of selfdual periodic Chern-Simons vortices of topological-type.
Calc. Var. Partial Differ. Equ.
29 (2007) 191–217.
CrossRef
Ye, D. and Zhou, F., Uniqueness of solutions of the Ginzburg-Landau problem.
Nonlinear Anal.
26 (1996) 603–612.
CrossRef