Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T00:04:55.363Z Has data issue: false hasContentIssue false

Approximation of a nonlinear elliptic problem arisingin a non-Newtonian fluid flow model in glaciology

Published online by Cambridge University Press:  15 March 2003

Roland Glowinski
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204-3476, USA.
Jacques Rappaz
Affiliation:
Department of Mathematics, EPFL, 1015 Lausanne, Switzerland. jacques.rappaz@epfl.ch.
Get access

Abstract

The main goal of this article is to establish a priori and a posteriori error estimates for the numerical approximation of some non linear ellipticproblems arising in glaciology. The stationary motion of a glacier is givenby a non-Newtonian fluid flow model which becomes, in a firsttwo-dimensional approximation, the so-called infinite parallel sided slabmodel. The approximation of this model is made by a finite element methodwith piecewise polynomial functions of degree 1. Numerical results show thatthe theoretical results we have obtained are almost optimal.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Baranger and H. El Amri. Estimateurs a posteriori d'erreurs pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 25 (1991) 31-48.
Barrett, J.W. and Liu, W., Finite element approximation of degenerate quasi-linear elliptic and parabolic problems. Pitman Res. Notes Math. Ser. 303 (1994) 1-16. In Numerical Analysis 1993.
Blatter, H., Velocity and stress fields in grounded glacier: a simple algorithm for including deviator stress gradients. J. Glaciol. 41 (1995) 333-344. CrossRef
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Stud. Math. Appl. 4 (1978).
Colinge, J. and Rappaz, J., A strongly non linear problem arising in glaciology. ESAIM: M2AN 33 (1999) 395-406. CrossRef
Glowinski, R. and Marrocco, A., Sur l'approximation par éléments finis d'ordre un, et la résolution par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires. Anal. Numér. 2 (1975) 41-76.
Hild, P., Ionescu, I.R., Lachand-Robert, T. and Rosca, I., The blocking of an inhomogeneous Bingham fluid. Applications to landslides. ESAIM: M2AN 36 (2002) 1013-1026. CrossRef
W. Liu and N. Yan. Quasi-norm local error estimators for p-Laplacian. SIAM J. Numer. Anal. 39 (2001) 100-127.
A. Reist, Résolution numérique d'un problème à frontière libre issu de la glaciologie. Diploma thesis, Department of Mathematics, EPFL, Lausanne, Switzerland (2001).