Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T15:21:41.162Z Has data issue: false hasContentIssue false

Inverse modelling of image-based patient-specific bloodvessels: zero-pressure geometry and in vivo stressincorporation

Published online by Cambridge University Press:  13 June 2013

Joris Bols
Affiliation:
Department of Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium.. Joris.Bols@UGent.be IBiTech-bioMMeda, De Pintelaan 185, 9000 Ghent, Belgium.
Joris Degroote
Affiliation:
Department of Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium.. Joris.Bols@UGent.be
Bram Trachet
Affiliation:
IBiTech-bioMMeda, De Pintelaan 185, 9000 Ghent, Belgium.
Benedict Verhegghe
Affiliation:
IBiTech-bioMMeda, De Pintelaan 185, 9000 Ghent, Belgium.
Patrick Segers
Affiliation:
IBiTech-bioMMeda, De Pintelaan 185, 9000 Ghent, Belgium.
Jan Vierendeels
Affiliation:
Department of Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium.. Joris.Bols@UGent.be
Get access

Abstract

In vivo visualization of cardiovascular structures ispossible using medical images. However, one has to realize that the resulting 3Dgeometries correspond to in vivo conditions. This entails an internalstress state to be present in the in vivo measured geometry ofe.g. a blood vessel due to the presence of the blood pressure. In orderto correct for this in vivo stress, this paper presents an inverse methodto restore the original zero-pressure geometry of a structure, and to recover thein vivo stress field of the final, loaded structure. The proposedbackward displacement method is able to solve the inverse problem iteratively using fixedpoint iterations, but can be significantly accelerated by a quasi-Newton technique inwhich a least-squares model is used to approximate the inverse of the Jacobian. The hereproposed backward displacement method allows for a straightforward implementation of thealgorithm in combination with existing structural solvers, even if the structural solveris a black box, as only an update of the coordinates of the mesh needs to beperformed.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trachet, B., Renard, M., De Santis, G., Staelens, S., De Backer, J., Antiga, L., Loeys, B. and Segers, P., An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE -/- mice. Annal. Biomed. Eng. 39 (2011) 24302444. Google Scholar
Kim, H.J., Vignon-Clementel, I.E., Figueroa, C.A., LaDisa, J.F., Jansen, K.E., Feinstein, J.A. and Taylor, C.A., On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annal. Biomed. Eng. 37 (2009) 21532169. Google Scholar
J. Degroote, I. Couckuyt, J. Vierendeels, P. Segers and T. Dhaene, Inverse modelling of an aneurysms stiffness using surrogate-based optimization and fluid-structure interaction simulations. Struct. Multidiscip. Optim. (2012) 1–13.
Lu, J., Zhou, X. and Raghavan, M.L., Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. J. Biomech. 40 (2007) 6936. Google ScholarPubMed
de Putter, S., Wolters, B.J.B.M., Rutten, M.C.M., Breeuwer, M., Gerritsen, F.A. and van de Vosse, F.N., Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40 (2007) 10811090. Google ScholarPubMed
Gee, M.W., Reeps, C., Eckstein, H.H. and Wall, W.A., Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42 (2009) 17321739. Google ScholarPubMed
Speelman, L., Bosboom, E.M.H., Schurink, G.W.H., Buth, J., Breeuwer, M., Jacobs, M.J. and van de Vosse, F.N., Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J. Biomech. 42 (2009) 17131719. Google ScholarPubMed
Merkx, M.A.G., van ’t Veer, M., Speelman, L., Breeuwer, M., Buth, J. and van de Vosse, F.N., Importance of initial stress for abdominal aortic aneurysm wall motion: Dynamic MRI validated finite element analysis. J. Biomech. 42 (2009) 23692373. Google ScholarPubMed
Govindjee, S. and Mihalic, P.A., Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136 (1996) 4757. Google Scholar
Govindjee, S. and Mihalic, P.A., Computational methods for inverse deformations in quasi-incompressible finite elasticity. Inter. J. Numer. Methods Eng. 43 (1998) 821838. Google Scholar
Fachinotti, V.D., Cardona, A. and Jetteur, P., Finite element modelling of inverse design problems in large deformations anisotropic hyperelasticity. Inter. J. Numer. Methods Eng. 74 (2008) 894910. Google Scholar
Haelterman, R., Degroote, J., Van Heule, D. and Vierendeels, J., The quasi-newton least squares method: A new and fast secant method analyzed for linear systems. SIAM J. Numer. Anal. 47 (2009) 23472368. Google Scholar
Degroote, J., Bathe, K.J. and Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87 (2009) 793801. Google Scholar
Haelterman, R., Degroote, J., Van Heule, D. and Vierendeels, J., On the similarities between the quasi-newton inverse least squares method and GMRes. SIAM J. Numer. Anal. 47 (2010) 46604679. Google Scholar
Degroote, J., Haelterman, R., Annerel, S., Bruggeman, P. and Vierendeels, J.. Performance of partitioned procedures in fluid-structure interaction. Comput. Struct. 88 (2010) 446457. Google Scholar
Raghavan, M.L., Ma, B. and Fillinger, M., Non-invasive determination of zero-pressure geometry of arterial aneurysms. Annal. Biomedical Eng. 34 (2006) 14141419. Google ScholarPubMed
Gee, M.W., Förster, Ch. and Wall, W.A., A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Inter. J. Numer. Methods Biomedical Eng. 26 (2010) 5272. Google Scholar
Alastrué, V., Garía, A., Peña, E., Rodríguez, J.F., Martínez, M.A. and Doblaré, M., Numerical framework for patient-specific computational modelling of vascular tissue. Inter. J. Numer. Methods Biomedical Eng. 26 (2010) 3551. Google Scholar
Speelman, L., Akyildiz, A.C., den Adel, B., Wentzel, J.J., van der Steen, A.F.W., Virmani, R., van der Weerd, L., Jukema, J.W., Poelmann, R.E., van Brummelen, E.H. and Gijsen, F.J.H., Initial stress in biomechanical models of atherosclerotic plaques. J. Biomech. 44 (2011) 23762382. Google ScholarPubMed
Pinsky, P. M., van der Heide, D. and Chernyak, D., Computational modeling of mechanical anisotropy in the cornea and sclera. J. Cataract Refract. Surg. 31 (2005) 13645. Google ScholarPubMed
Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Kvamsdal, T., Hentschel, S. and Isaksen, J., Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms. Biomech. Model. Mechanobiol. 9 (2010) 481498. Google ScholarPubMed
Hsu, M. C. and Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des. 47 (2011) 593599. Google Scholar
Prendergast, P.J., Lally, C., Daly, S., Reid, A.J., Lee, T.C., Quinn, D. and Dolan, F., Analysis of prolapse in cardiovascular stents: A constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 125 (2003) 692699. Google ScholarPubMed
De Santis, G., De Beule, M., Van Canneyt, K., Segers, P., Verdonck, P. and Verhegghe, B., Full-hexahedral structured meshing for image-based computational vascular modeling. Medical Eng. Phys. 33 (2011) 13181325. Google ScholarPubMed