Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T21:26:26.448Z Has data issue: false hasContentIssue false

On nonoverlapping domain decomposition methodsfor the incompressible Navier-Stokes equations

Published online by Cambridge University Press:  15 November 2005

Xuejun Xu
Affiliation:
LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, PO Box 2719, Beijing, 100080, China. xxj@lsec.cc.ac.cn
C. O. Chow
Affiliation:
Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan. cchow@alum.mit.edu
S. H. Lui
Affiliation:
Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. luish@cc.umanitoba.ca
Get access

Abstract

In this paper, a Dirichlet-Neumann substructuring domaindecomposition method is presented for a finite elementapproximation to the nonlinear Navier-Stokes equations. It isshown that the Dirichlet-Neumann domain decomposition sequenceconverges geometrically to the true solution provided the Reynoldsnumber is sufficiently small. In this method, subdomain problemsare linear. Other version where the subdomain problems are linearStokes problems is also presented.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Cahouet, On some difficulties occurring in the simulation of incompressible fluid flows by domain decomposition methods, in Proc. of the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988).
X.C Cai, D.E. Keyes and V. Venkatakrishnan, Newton-Krylov-Schwarz: An implicit solver for CFD, in Proc. of the Eighth International Conference on Domain Decomposition Methods in Science and Engineering, R. Glowinski, J. Periaux, Z.C. Shi and O.B. Widlund Eds., Wiley, Strasbourg (1997).
T.F. Chan and T.P. Mathew, Domain decomposition algorithm. Acta Numerica (1994) 61–143.
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
Q.V. Dinh, R. Glowinski, J. Periaux and G. Terrasson, On the coupling of viscous and inviscid models for incompressible fluid flows via domain decomposition, in Proc. the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988).
Fatone, L., Gervasio, P. and Quarteroni, A., Multimodels for incompressible flows. J. Math. Fluid Dynamics 2 (2000) 126150.
M. Fortin and R. Aboulaich, Schwarz's Decomposition Method for Incompressible Flow Problems, in Proc. of the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988).
V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Spring-Verlag, Berlin (1986).
Gunzburger, M. and Lee, H.K., An optimization-based domain decomposition method for the Navier-Stokes equations. SIAM J. Numer. Anal. 37 (2000) 14551480. CrossRef
Gunzburger, M. and Nicolaides, R., On substructuring algorithms and solution techniques for numerical approximation of partial differential equations. Appl. Numer. Math. 2 (1986) 243256. CrossRef
Le Tallec, P., Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121220.
P.L. Lions, On the Schwarz alternating method, in Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G.H. Golub, G.A. Meurant and J. Periaux Eds., SIAM, Philadelphia (1988) 1–42.
Lui, S.H., Schwarz, On alternating methods for nonlinear PDEs. SIAM J. Sci. Comput. 21 (2000) 15061523. CrossRef
Lui, S.H., Schwarz, On alternating methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 22 (2001) 19741986. CrossRef
Lui, S.H., On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs. Numer. Math. 93 (2002) 109129.
Marini, L.D. and Quarteroni, A., A relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575598. CrossRef
A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999).
B.F. Smith, P.E. Bjorstad and W.D. Gropp, Domain Decomposition: Parallel Multilevel Algorithms for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, UK (1996).
R. Teman, The Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1977).
Xu, J. and Zou, J., Some nonoverlapping domain decomposition methods. SIAM Rev. 40 (1998) 867914. CrossRef