Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:20:05.920Z Has data issue: false hasContentIssue false

On the asymptotic properties of a simple estimate of the Mode

Published online by Cambridge University Press:  15 September 2004

Christophe Abraham
Affiliation:
ENSAM-INRA, UMR Biométrie et Analyse des Systèmes, 2 place Pierre Viala, 34060 Montpellier Cedex 1, France; abraham@helios.ensam.inra.fr.
Gérard Biau
Affiliation:
Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie – Paris VI, Boîte 158, 175 rue du Chevaleret, 75013 Paris, France; biau@ccr.jussieu.fr.
Benoît Cadre
Affiliation:
Laboratoire de Probabilités et Statistique, Université Montpellier II, Cc. 051, place Eugène Bataillon, 34095 Montpellier Cedex 5, France; cadre@stat.math.univ-montp2.fr.
Get access

Abstract

We consider an estimate of the mode θ of a multivariate probability density f with support in $\mathbb R^d$ using a kernel estimate f n drawn from a sample X1,...,Xn . The estimate θn is defined as any x in {X1,...,Xn } such that $f_n(x)=\max_{i=1, \hdots,n} f_n(X_i)$ . It is shown that θn behaves asymptotically as any maximizer ${\hat{\theta}}_n$ of f n . More precisely, we prove that for any sequence $(r_n)_{n\geq 1}$ of positive real numbers such that $r_n\to\infty$ and $r_n^d\log n/n\to 0$ , one has $r_n\,\|\theta_n-{\hat{\theta}}_n\| \to 0$ in probability. The asymptotic normality of θn follows without further work.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, C., Biau, G. and Cadre, B., Simple estimation of the mode of a multivariate density. Canadian J. Statist. 31 (2003) 23-34. CrossRef
Devroye, L., Recursive estimation of the mode of a multivariate density. Canadian J. Statist. 7 (1979) 159-167. CrossRef
L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987).
Eddy, W.F., Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. CrossRef
Konakov, V.D., On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842.
Leclerc, J. and Pierre-Loti-Viaud, D., Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris 331 (2000) 637-640. CrossRef
A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator, ESAIM: Probab. Statist. 7 (2003) 1-21.
Parzen, E., On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. CrossRef
D. Pollard, Convergence of Stochastic Processes. Springer–Verlag, New York (1984).
Romano, J.P., On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. CrossRef
Rosenblatt, M., Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837. CrossRef
Sager, T.W., Estimating modes and isopleths. Comm. Statist. – Theory Methods 12 (1983) 529-557. CrossRef
Samanta, M., Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117.
Silverman, B., Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 (1978) 177-184. CrossRef
Vieu, P., A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. CrossRef