No CrossRef data available.
Article contents
Stability of precise Laplace's method under approximations;Applications
Published online by Cambridge University Press: 15 August 2002
Abstract
We study the fluctuations around non degenerate attractorsof the empirical measure under mean field Gibbs measures.We prove that a mild change of the densitiesof these measures does not affect the central limit theorems.We apply this result to generalize the assumptionsof [3] and [12] on the densities of the Gibbs measures toget precise Laplace estimates.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, SMAI, 1999
References
Arcones, M.A. and Gine, E., Limit Theorems for U-processes.
Ann. Probab.
21 (1993) 1494-1542.
CrossRef
Arcones, M.A. and Gine, E., On the bootstrap of U and V statistics.
Ann. Stat.
20 (1992) 655-674.
CrossRef
Ben Arous, G. and Brunaud, M., Méthode de Laplace : Étude variationnelle des fluctuations de diffusions de type "champ moyen''.
Stochastics
31-32 (1990) 79-144.
M.Sh. Birman, A proof of the Fredholm trace formula as an application of a simple embedding for kernels of integral operators of trace class in
$L^2(\mathbb{R}^m)$
. Lith-Mat-R-89-30 (1989).
E. Bolthausen, Laplace approximation for sums of independent random vectors I. Prob. Th. Rel. Fields
72 (1986) 305-318.
C. Borell, On the integrability of Banach space valued Walsh polynomials. Séminaire de probabilités XIII. Lecture Notes in Math.
721 (1979) 1-3.
Dawson, D.A., Critical dynamics and fluctuations for a mean field model of cooperative behavior.
J. Stat. Phys.
31 (1983) 247-308.
CrossRef
De Acosta, A. and Gine, E., Convergence of moments and related Functionals in the central limit Theorem in Banach spaces.
Z. Wahrsch. Verw. Gebiete
48 (1979) 213-231.
CrossRef
A. Dembo and O. Zeitouni, Large deviations techniques and Applications. Jones and Bartlett (1992).
J.D. Deuschel and D.W. Stroock, Large deviations. Academic press (1989).
Hitsuda, M. and Tanaka, H., Central limit Theorem for a simple diffusion model for interacting particles.
Hiroshima Math. J.
11 (1981) 415-423.
S. Kusuoka and Y. Tamura, Gibbs measures for mean field potentials. J. Fac. Sci. Univ. Tokyo Sect. IA Math.
31 (1984).
Mac Kean, H.P., Fluctuations in the kinetic theory of gases.
Comm. Pure Appl. Math.
28 (1975) 435-455.
CrossRef
K.R. Parthasarathy, Probability measures on Metric Spaces. Academic Press Inc., New York (1968).
V.H. De La Pena, Decoupling and Khintchine's inequalities for U-statistics. Ann. Probab.
20 (1992) 1877-1892.
W. Rudin, Real and complex analysis, second edition, Springer.
Shiga, T. and Tanaka, H., Central limit Theorem for a system of markovian particles with mean field interaction.
Z. Wahrsch. Verw. Gebiete
69 (1985) 439-459.
CrossRef
B. Simon, Trace ideals and their applications. London Mathematical Society Lecture Notes series
35, Cambridge University press (1977).
A.-S. Sznitman, Non linear reflecting diffusion process and the propagation of chaos and fluctuations associated.
Tanaka, H., Limit Theorems for certain diffusion processes. in Proc. of the Taniguchi Symp, Katata (1982) 469-488, Tokyo, Kinokuniya (1984).
J. Funct. Anal.
56 (1984) 311-336.