Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T11:12:49.975Z Has data issue: false hasContentIssue false

N-acetylcysteine counteracts increased brain excitatory/inhibitory balance following maternal high-fat diet and restores emotional and cognitive profiles in adult mouse offspring

Published online by Cambridge University Press:  27 August 2024

C. Musillo*
Affiliation:
1Center for behavioral sciences and mental health
M. Samà
Affiliation:
1Center for behavioral sciences and mental health
B. Collacchi
Affiliation:
1Center for behavioral sciences and mental health
M. A. Ajmone-Cat
Affiliation:
2Dept. Neuroscience, Istituto Superiore di Sanità, Rome
R. De Simone
Affiliation:
2Dept. Neuroscience, Istituto Superiore di Sanità, Rome
K. C. Creutzberg
Affiliation:
3Dept. Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
M. A. Riva
Affiliation:
3Dept. Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
A. Berry
Affiliation:
1Center for behavioral sciences and mental health
F. Cirulli
Affiliation:
1Center for behavioral sciences and mental health
*
*Corresponding author.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction

High-fat diet (HFD) consumption during pregnancy can shape fetal brain development, increasing susceptibility to mental disorders. Nevertheless, the mechanisms underlying these negative outcomes remain unclear.

Objectives

We hypothesize that mHFD induces inflammation and oxidative stress (OS) in the fetal brain, disrupting excitatory/inhibitory (E/I) balance in the adult brain. This results in altered hypothalamic-pituitary-adrenal (HPA) axis reactivity, emotional regulation, and cognitive function. We tested the ability of N-acetyl-cysteine (NAC) - a powerful anti-oxidant and anti-inflammatory compound - to counteract mHFD effects.

Methods

Our mHFD model consists of female C57BL/6N mice fed either HFD (fat 58%, carbohydrate 25.5%, and protein 16.4%) or control diet (CD, fat 10.5%, carbohydrate 73.1% and protein 16.4%) before and during pregnancy (13 weeks). After 5 weeks on diets, half of them received NAC (1g/kg) for 8 weeks, until delivery.

Gene expression of Il-1b, Cd68, Tmem119, iNOS, and Arg1 was measured in fetal brains. Cognitive function and emotional phenotype were assessed in adult male and female offspring through the Morris Water Maze (MWM) and the Emergence test, respectively. HPA axis functionality was assessed by measuring plasma corticosterone levels by ELISA following acute stress. Gene expression of vesicular glutamate transporter 1 (Vglut1) and vesicular GABA transporter (Vgat) were assessed as markers of E/I balance.

Results

Exposure to mHFD induced inflammation and OS in the fetal brain of both sexes, by increasing Il-1b and iNOS/Arg1. Additionally, Cd68 and Tmem119 were specifically increased in females. In adulthood, mHFD reduced latency to emerge from the shelter in the Emergence test in both sexes. In females, mHFD impaired cognitive function, reducing time spent in the MWM target zone, and increased HPA reactivity in response to acute stress. Furthermore, mHFD decreased Vgat expression in both sexes, resulting in an imbalanced Vglut1/Vgat ratio towards excessive excitatory input. Maternal NAC supplementation rescued this imbalance.

Conclusions

Overall, these data show that mHFD increases inflammation and OS in fetal brains, with greater effects in female offspring, inducing alterations in the E/I neuronal balance with concomitant disruptions of the neuroendocrine system and the emotional and cognitive profiles during adulthood. The supplementation with NAC was effective in rescuing the E/I imbalance as well as the behavioral phenotype.

Disclosure of Interest

None Declared

Type
Abstract
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of European Psychiatric Association
Submit a response

Comments

No Comments have been published for this article.