Published online by Cambridge University Press: 03 October 2008
Sustainable crop production on Rwandan oxisols is limited by widespread soil acidity caused by high levels of exchangeable aluminium. This study was designed to test the effectiveness of an indigenous lime material in counteracting the acidity and enhancing crop yields. Lime application significantly raised pH, exchangeable calcium and effective cation exchange capacity, and reduced exchangeable aluminium and total acidity. Calcium was directly proportional to effective cation exchange capacity (r = 0.962**) and was inversely related to aluminium (r = −0.955**). Consequently, yields of wheat, beans and potatoes, which served as test crops, were significantly increased by liming. Lime at high rates (4–8 t ha−1) had a longer residual effect than at low rates (less than 2 t ha−1), suggesting frequent applications are needed when low lime rates are used. Simple regression analysis showed an increase in pH of 0.154 units and a decrease in exchangeable aluminium of 0.385 meq 100 g−1 for a tonne of lime applied.