Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T22:13:47.092Z Has data issue: false hasContentIssue false

HELPING FARMERS ADAPT TO CLIMATE AND CROPPING SYSTEM CHANGE THROUGH INCREASED ACCESS TO SORGHUM GENETIC RESOURCES ADAPTED TO PREVALENT SORGHUM CROPPING SYSTEMS IN BURKINA FASO

Published online by Cambridge University Press:  15 November 2013

KIRSTEN VOM BROCKE*
Affiliation:
CIRAD, UMR AGAP, ICRISAT, BP 320 Bamako, Mali
GILLES TROUCHE
Affiliation:
CIRAD, UMR AGAP, F-34398 Montpellier, France
EVA WELTZIEN
Affiliation:
ICRISAT WCA, BP 320 Bamako, Mali
CLARISSE P. KONDOMBO-BARRO
Affiliation:
INERA, Programme Céréales Traditionnelles, CRREA du Centre, BP 10 Koudougou, Burkina Faso
ADAMA SIDIBÉ
Affiliation:
Union de Groupement Pour la Commercialisation des Produits Agricole, Boucle du Mouhoun, BP 74 Dedougou, Burkina Faso
ROBERT ZOUGMORÉ
Affiliation:
ICRISAT WCA, CCAFS Regional Program West Africa, Bamako, BP 320 Bamako, Mali
ERIC GOZÉ
Affiliation:
CIRAD, UPR SCA, F-34398 Montpellier, France
*
Corresponding author. Email: Kirsten.vom_brocke@cirad.fr

Summary

Sorghum (Sorghum bicolor (L.) Moench) is a major staple crop of Burkina Faso where farmers continue to cultivate photoperiod-sensitive guinea landraces as part of the strategy to minimize risk and ensure yield stability. In the Boucle du Mouhoun region, however, sorghum farmers appear to have insufficient varietal choice due to cropping systems having shifted towards more intensive cultivation of cotton and maize, and rainfall patterns having decreased over the past decade. In search for new varietal options that can respond to this changing context, researchers decided to give farmers access to ex-situ national collections along with the opportunity to evaluate recent improved varieties. From 2002 to 2007, researchers and farmers worked closely together to implement on-farm testing, including varietal selection trials, crop management and multi-locational trials. Farmers’ choices tend to differ among groups, villages and years, with the exception of four particular landraces: two originating from a collection carried out in the Mouhoun region more than 30 years previous to this research, and two other landraces that came from the dissimilar agro-ecological zones of Burkina Faso. These four were the most commonly selected landraces out of 36 cultivars that covered both improved and landrace varieties. Farmers’ selection criteria were focused on adaptation to agro-climatic conditions as well as specific grain qualities for processing and consumption. The potential usefulness of each variety was verified via multi-locational trials. The paper also shows that wide dissemination of experimental seed, not just across the Mouhoun region but also at a national scale, was largely achieved through collaboration with a strong farmer organisation in conjunction with farmer training programs focused on the on-farm seed production and the commercialisation of this seed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akponikpè, P. B. I, Johnston, P. and Agbossou, E. K. (2010). Farmers’ perception of climate change and adaptation strategies in sub-Saharan West-Africa. In ICID+18 2nd International Conference: Climate, Sustainability and Development in Semi-Arid Regions, Fortaleza-Ceará, Brazil, August 1620.Google Scholar
Almekinders, C. J. M., Louwaars, N. P. and de Bruijn, G. (1994). Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78:207216.Google Scholar
Barro-Kondombo, C., Sagnard, F., Chantereau, J., Deu, M., vom Brocke, K., Durand, P., Gozé, E. and Zongo, J. D. (2010). Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso. Theoretical Applied Genetics 120:15111523.Google Scholar
Bazile, D. and Soumaré, M. (2004). Gestion spatiale de la diversité variétale en réponse à la diversité écosystémique: le cas du sorgho (Sorghum bicolor (L) Moench) au Mali. Cahiers Agricultures 13:480487.Google Scholar
Delaunay, S., Tescar, R. P., Oualbéogo, A., Vom Brocke, K. and Lançon, J. (2008). La culture du coton ne bouleverse pas les échanges traditionnels de semences de sorgho. Cahiers Agricultures 17:189194.Google Scholar
Eberhart, S. A. and Russell, W. A.. (1966). Stability parameters for comparing varieties. Crop Science 6:3640.Google Scholar
Finlay, K. W. and Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research 14:742754.CrossRefGoogle Scholar
Friis-Hansen, E. and Sthapit, B. (2000). Participatory Approaches to the Conservation and Use of Plant Genetic Resources. Rome, Italy: International Plant Genetic Resources Institute.Google Scholar
Hansen, J. W., Mason, S., Sun, L. and Tall, A., 2011. Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Experimental Agriculture 47:205240.Google Scholar
Haussmann, B. I. G., Rattunde, H. F., Weltzien-Rattunde, E., Traoré, P. S. C., vom Brocke, K. and Parzies, H. K. (2012). Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. Journal of Agronomy and Crop Science 198:327339.Google Scholar
ICRISAT/INERA. (2003). Participatory diagnostic on the cultivation and usage of sorghum landrace diversity in 10 villages in the Boucle du Mouhoun region in Burkina Faso, Internal report, ICRISAT/INERA 2003.Google Scholar
Lacy, S. M., Cleveland, D. A. and Soleri, D. (2006). Farmer choice of sorghum varieties in southern Mali. Human Ecology 34:331353.Google Scholar
McMillan, M. S., Masters, W. A. and Kazianga, H. (2011). Rural demography, public services and land rights in Africa: a village-level analysis in Burkina Faso. NBER Working Paper Series, Working Paper 17718, Cambridge, MA.Google Scholar
Ministère de l'Agriculture de l'Hydraulique et des Ressources Halieutiques/Direction des Statistiques Agricoles (MAHRH/DGPSA). (2006). Données sur les productions nationales. Available at: http://agristat.bf.tripod.com; last accessed 30 April 2012.Google Scholar
Mulatu, E. and Zelleke, H. (2002). Farmers’ highland maize (Zea mays L.) selection criteria: implication for maize breeding for the Hararghe highlands of eastern Ethiopia. Euphytica 127:1130.CrossRefGoogle Scholar
Nicholson, S. (2005). On the question of the ‘recovery’ of the rains in the West African Sahel. Journal of Arid Environments 63:615641.Google Scholar
Seboka, B. and van Hintum, T. (2006). The dynamics of on-farm management of sorghum in Ethiopia: implication for the conservation and improvement of plant genetic resources. Genetic Resources and Crop Evolution 53:13851403.Google Scholar
Smale, M. (Ed) (2006). Valuing Crop Biodiversity: On-Farm Genetic Resources and Economic Change. Wallingford, UK: CABI.Google Scholar
Trouche, G., Chantereau, J. and Zongo, J. D. (1998). Variétés traditionnelles et variétés améliorées de sorgho dans les régions sahéliens. In The Future of Photoperiodical Cereals for Sustainable Production in the semiarid tropics of Africa: Proceedings of the International Workshop, 27–30 April, Florence, Italy, 197208 (Eds Bacci, L. and Reyniers, F. N., CeSIA, Florence, Italy). Montpellier, France: CIRAD.Google Scholar
Trouche, G., Da, S., Palé, G., Sorgho, A., Ouédraogo, O., Den Gosso, G. (2002). Evaluation participative de nouvelles variétés de sorgho au Burkina. In La sélection Participative: Impliquer les Utilisateurs Dans l'amélioration des Plantes: Proceedings of the Workshop, CIRAD, Montpellier, France, 5–6 September 2001 (Eds Hocdé, H., Lançon, J. and Trouche, G.), 817. Available at: http://afm.cirad.fr/documents/2_Innovations/CD_AFM/textes/200.pdf; last accessed 12 June 2012.Google Scholar
Trouche, G., vom Brocke, K., Aguirre, S. and Chow, Z. (2009). Giving new sorghum variety options to resource-poor farmers in Nicaragua through participatory varietal selection. Experimental Agriculture 45:451467.Google Scholar
Utz, H. F. (2005). PLABSTAT (version 3A-pre of 2005-08-16), A Computer Program for Statistical Analysis of Plant Breeding Experiments. Stuttgart, Germany: Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim.Google Scholar
Vom Brocke, K., Trouche, G., Hocdé, H. and Bonzi, N. (2011). Sélection variétale au Burkina Faso: un nouveau type de partenariat chercheur et agriculteurs. Grain de Sel 52–53: 2021.Google Scholar
Vom Brocke, K., Trouche, G., Weltzien, E., Barro-Kondombo, C. P., Gozé, E. and Chantereau, J. (2010). Participatory variety development for sorghum in Burkina Faso: farmers’ selection and farmers’ criteria. Field Crops Research 119:183194.Google Scholar
Weltzien, E., Kanouté, M., Touré, A., Rattunde, F., Diallo, B., Sissoko, I., Sangaré, A. and Siart, S. (2008). Participatory identification of superior sorghum varieties using multi-locational trials in two zones in Mali. Cahiers Agricultures 17:134139.Google Scholar
Witcombe, J. R., Petre, R., Jones, S. and Joshi, A. (1999). Farmer participatory crop improvement. IV The spread and impact of a rice variety identified by participatory varietal selection. Experimental Agriculture 35:471487.CrossRefGoogle Scholar