Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T23:26:03.343Z Has data issue: false hasContentIssue false

UPLAND RICE CULTIVAR RESPONSES TO ROW SPACING AND WATER STRESS ACROSS MULTIPLE ENVIRONMENTS

Published online by Cambridge University Press:  18 October 2016

ALEXANDRE BRYAN HEINEMANN*
Affiliation:
Embrapa Arroz e Feijão (CNPAF), Rodovia GO-462, km 12 Zona Rural, CP. 179, 75375-000, Santo Antônio de Goiás, GO, Brazil
JULIAN RAMIREZ-VILLEGAS
Affiliation:
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), km 17 recta Cali-Palmira, Cali, Colombia International Center for Tropical Agriculture (CIAT), km 17 recta Cali-Palmira, Cali, Colombia
ADRIANO STEPHAN NASCENTE
Affiliation:
Embrapa Arroz e Feijão (CNPAF), Rodovia GO-462, km 12 Zona Rural, CP. 179, 75375-000, Santo Antônio de Goiás, GO, Brazil
WALMES MARQUES ZEVIANI
Affiliation:
Laboratório de Estatística e Geoinformática (LEG), Departamento de Estatística, Universidade Federal do Paraná, Edifício da Administração - 3º andar - Centro Politécnico, CP. 19.081, 81.531-990, Curitiba, PR, Brazil
LUÍS FERNANDO STONE
Affiliation:
Embrapa Arroz e Feijão (CNPAF), Rodovia GO-462, km 12 Zona Rural, CP. 179, 75375-000, Santo Antônio de Goiás, GO, Brazil
PAULO CESAR SENTELHAS
Affiliation:
Departamento de Engenharia de Biossistemas, ESALQ, Universidade de São Paulo, Av. Pádua Dias, 11, Bairro Agronomia, CP. 9, 13418–900, Piracicaba, SP, Brazil
*
§§Corresponding author. Email: alexandre.heinemann@embrapa.br

Summary

Upland rice (Oryza sativa L., UR) could be an option under soybean–maize crop rotation system. However, the recommended row spacing for UR (0.30 m) is shorter than that recommended for soybean and corn (0.40 m), limiting the use of UR in this rotation. We hypothesize that cultivar adaptation to wider than recommended row spacing and local environmental conditions harbour significant potential for overcoming the yield constraints of wider row spacing. We evaluated the row spacing effects on rice grain yield and their components in UR cultivars grown under different water deficit conditions. The experiments were designed as a randomized block in a split–split-plot scheme with sites (the cities of Santo Antônio de Goiás, Porangatu and Formoso) as main plots, row spacing (0.25, 0.35, 0.45 and 0.55 m) as the subplots and UR cultivars (one old and two modern genotypes) as the sub-subplots. We found that, in the less stressful environments, the modern cultivars, BRSMG Curinga and BRS Primavera, presented the highest grain yield. By contrast, in environments with moderate to intense water stress, the traditional cultivar, Douradão, presented the best performance, regardless of row spacing used. We conclude that UR is a viable option for soybean–maize rotation systems, as the UR cultivars tested presented no noticeable yield losses when sown with the same row spacing used for soybean and maize crops (0.40 m). In terms of impact, it can lead to an increase in UR cropped area in Brazil, and decrease in dependence on flooded rice harvested in the south of the country.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baloch, A. W., Soomro, A. M., Javed, M. A. and Ahmed, M. (2002). Optimum plant density for high yield in rice (Oryza sativa L.). Asian Journal of Plant Sciences 1:2527.Google Scholar
Bernier, J., Atlin, G. N., Serraj, R., Kumar, A. and Spaner, D. (2008). Breeding upland rice for drought resistance. Journal Science Food Agriculture 88:927939.Google Scholar
Bouman, B. A. M., Kropff, M. J., Tuong, T. P., Wopereis, M. C. S., Ten Berge, H. F. M. and Van Laar, H. H. (2001). ORYZA2000: Modelling Lowland Rice. Los Baños, Philippines: Internacional Rice Research Institute.Google Scholar
Bouman, B. A. M., Peng, S., Castañeda, A. R. and Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management 74:87105.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. (2011). Row spacing and weed control timing affect yield of aerobic rice. Field Crops Research 121:226231.Google Scholar
Counce, P. A., Keisling, T. C. and Mitchel, A. J. (2000). A uniform, objective, and adaptive system for expressing rice development. Crop Science 40:436443.CrossRefGoogle Scholar
Crusciol, C. A. C., Arf, O., Soratto, R. P. and Andreotti, M. (2003). Rice yield under upland and sprinkler irrigation as affected by row spacing. Agronomia 37:1015. (in Portuguese, with abstract in English).Google Scholar
Crusciol, C. A. C., Soratto, R. P., Nascente, A. S. and Arf, O. (2013). Root distribution, nutrient uptake, and yield of two upland rice cultivars under two water regimes. Agronomy Journal 105:237247.CrossRefGoogle Scholar
Dingkuhn, M., Laza, M. R. C., Kumar, U., Mendez, K. S., Collard, B., Jagadish, K., Singh, R. K., Padolina, T., Malabayabas, M., Torres, E., Rebolledo, M. C., Manneh, B. and Sow, A. (2015). Improving yield potential of tropical rice: achieved levels and perspectives through improved ideotypes. Field Crops Research 182:4359.Google Scholar
Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P. K., Toulmin, C., Vermeulen, S. J. and Godfray, H. C. J. (2013). Sustainable intensification in agriculture: premises and policies. Science 341:3334.Google Scholar
George, T., Magbanua, R., Garrity, D. P., Tubana, B. S. and Quiton, J. (2002). Rapid yield loss of rice cropped successively in aerobic soil. Agronomy Journal 94:981989.CrossRefGoogle Scholar
Hayashi, S., Kamoshita, A. and Yamagishi, J. (2006). Effect of planting density on grain yield and water productivity of rice (Oryza sativa) grown in flooded and non-flooded fields in Japan. Plant Production Science 9:298311.Google Scholar
Heinemann, A. B., Barrios-Perez, C., Ramirez-Villegas, J., Arango-Londono, D., Bonilla-Findji, O., Medeiros, J. C. and Jarvis, A. (2015). Variation and impact of drought-stress patterns across upland rice target population of environments in Brazil. Journal of Experimental Botany 66:36253638.Google Scholar
Heinemann, A. B. and Sentelhas, P. C. (2011). Environmental group identification for upland rice production in central Brazil. Scientia Agricola 68:540547.Google Scholar
Heinemann, A. B., Stone, L. F. and Fageria, N. K. (2011). Transpiration rate response to water deficit during vegetative and reproductive phases of upland rice cultivars. Scientia Agricola 68:2430.Google Scholar
IBGE. Instituto Brasileiro de Geografia e Estatística. (2015). Produção agrícola municipal: área plantada, área colhida, quantidade produzida e valor da produção da lavoura temporária. Available at: <http://www.sidra.ibge.gov.br/bda/acervo/acervo9.asp?e=c&p=PA&z=t&o=11>. Accessed June 20, 2015..+Accessed+June+20,+2015.>Google Scholar
Jakelaitis, A., Araujo, R., Pittelkow, F. K., Oliveira, A. A. and Quaresma, J. P. S. (2009). Rice response to row distance and weed tolerance. Global Science and Technology 2:1628. (in Portuguese, with abstract in English).Google Scholar
Ji, K., Wang, Y., Sun, W., Lou, Q., Mei, H., Shen, S. and Chen, H. (2012). Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of Plant Physiology 169:336344.Google Scholar
Lafitte, H. R., Li, Z. K., Vijayakumar, C. H. M., Gao, Y. M., Shi, Y., Xu, J. L., Fu, B. Y., Ali, A. J., Domingo, J., Maghirang, R., Torres, R. and Mackill, D. (2006). Improvements of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Research 97:7786.Google Scholar
Lampayan, R. M., Bouman, B. A. M., De Dios, J. L., Espiritu, A. J., Soriano, J. B., Lactaoen, A. T., Faronilo, J. E. and Thant, K. M. (2010). Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field Crops Research 116:165174.Google Scholar
Pinheiro, B. S., Castro, E. M. and Guimarães, C. M. (2006). Sustainability and profitability of aerobic rice production in Brazil. Field Crops Research 97:3442.Google Scholar
Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer.Google Scholar
Santos, A. B., Stone, L. F., and Vieira, N. R. A. eds. (2006). The rice crop in Brazil, 2nd edn. Santo Antônio de Goiás, GO, Brazil (in Portuguese): Embrapa Arroz e Feijão.Google Scholar
Uddin, M. J., Hasan, M. M., Ahmed, S. and Hasan, M. M. (2010). Effect of spacing on morpho-physiological response of different T. Aman rice cultivars under coastal high land ecosystem. Indian Journal of Agricultural Research 44:251258.Google Scholar
West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., Cassidy, E. S., Johnston, M., MacDonald, G. K., Ray, D. K. and Siebert, S. (2014). Leverage points for improving global food security and the environment. Science 345:325328.Google Scholar
Supplementary material: File

Heinemann supplementary material

Heinemann supplementary material 1

Download Heinemann supplementary material(File)
File 396.4 KB