Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T11:39:01.677Z Has data issue: false hasContentIssue false

SELENIUM BIOFORTIFICATION OF RICE THROUGH FOLIAR APPLICATION WITH SELENITE AND SELENATE

Published online by Cambridge University Press:  19 April 2018

FERNANDO CEBOLA LIDON*
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
KARLIANA OLIVEIRA
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
CARLOS GALHANO
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
MAURO GUERRA
Affiliation:
Laboratório de Instrumentação, Engenharia Biomédica, e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
MARIA MANUELA RIBEIRO
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
JOÃO PELICA
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
INÊS PATACO
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
JOSÉ COCHICHO RAMALHO
Affiliation:
Plant Stress & Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Deptartamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
ANTÓNIO EDUARDO LEITÃO
Affiliation:
Plant Stress & Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Deptartamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
ANA SOFIA ALMEIDA
Affiliation:
Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Oeiras/Elvas, Portugal
PAULA SCOTTI CAMPOS
Affiliation:
Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Oeiras/Elvas, Portugal
ANA I. RIBEIRO-BARROS
Affiliation:
Plant Stress & Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Deptartamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
ISABEL P. PAIS
Affiliation:
Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Oeiras/Elvas, Portugal
MARIA MANUELA SILVA
Affiliation:
ESEAG, COFAC – Escola Superior de Educação Almeida Garrett, Lisboa, Portugal
MARIA LUISA CARVALHO
Affiliation:
Laboratório de Instrumentação, Engenharia Biomédica, e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
JOSÉ PAULO SANTOS
Affiliation:
Laboratório de Instrumentação, Engenharia Biomédica, e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
MARIA FERNANDA PESSOA
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
FERNANDO HENRIQUE REBOREDO
Affiliation:
GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal
*
‡‡Corresponding author. Email: fjl@fct.unl.pt

Summary

Selenium (Se) is an essential micronutrient for humans, yet its dietary intake is low, mostly due to the low bioavailability in soils and therefore in edible plant tissues. To overcome Se deficiency, the breeding approach (i.e., genetic biofortification), namely in rice, is largely dependent on available Se pools. To ensure the success of genetic biofortification with Se, agronomic biofortification can be accomplished through foliar Se application. Considering this background, the main hypothesis of this work was centered in the foliar application of Se to attain agronomic biofortification of rice crops. This study also aimed to assess the full potential for increasing grain Se concentrations during rice filling, as well as the types of nutrients deposition. An experimental design applying two foliar fertilizers (sodium selenite and sodium selenate) was developed. As test systems, four rice genotypes (Ariete, Albatros, OP1105 and OP1109) were used and the kinetics of micro- and macro-nutrients accumulation and deposition were assessed. Biofortification was performed in field trials for two years with foliar fertilization ranging between 0 and 300 g Se ha−1. At the end of the plant cycle, selenite applications triggered 427- to 884-fold increases in grain Se concentrations among rice genotypes (Albatros > OP1105 > OP1109 > Ariete). The application of selenate also prompted 128- to 347-fold increases in grain Se concentrations in rice crops (Albatros > OP1105 > Ariete > OP1109). Regardless of the foliar fertilizer applied, Se deposition among genotypes occurred throughout the grain without relevant inhibitory effects on yields. In each genotype, micro and macronutrients varied among crop tissues.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bashir, K., Takahashi, R., Akhtar, S., Ishimaru, Y., Nakanishi, H. and Nishizawa, N. K. (2013). The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6 (1):17. doi: 10.1186/1939-8433-6-31.Google Scholar
Cakmak, I., Pfeiffer, W. F. and McClafferty, B. (2010). Biofortification of durum wheat with zinc and iron. Cereal Chemistry 87:1020. doi: 10.1094/CCHEM-87-1-0010.Google Scholar
Carey, A. M., Scheckel, K. G., Lombi, E., Newville, M., Choi, Y., Norton, G. J., Price, A. H. and Meharg, A. A. (2012). Grain accumulation of selenium species in rice (Oryza sativa L.). Environmental Science and Technology 46:55575564. doi: 10.1021/es203871j.Google Scholar
Chen, L., Yang, F., Xu, J., Yun, H., Hu, Q., Zhang, Y. and Pan, G. (2002). Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on Se content of rice. Journal of Agricultural Food Chemistry 50:51285130. doi: 10.1021/jf0201374.Google Scholar
Combs, G. F. (2001). Selenium in global food systems. British Journal of Nutrition 85:517547. doi.org/10.1079/BJN2000280.Google Scholar
Duarte, R. F., Prom-u-thai, C., Amaral, D. C., Faquin, V., Guilherme, L. R. G., Reis, A. R. and Alves, E. (2016). Determination of zinc in rice grains using DTZ staining and Image software. Journal of Cereal Science 68:5358. doi: 10.1016/j.jcs.2015.11.006Google Scholar
Fairweather-Tait, B., Broadley, M. R., Collings, R., Ford, D., Hesketh, J. and Hurst, R. (2011). Selenium in human health and disease. Antioxidants Redox Signaling 14:13371383. doi: 10.1089/ars.2010.3275.Google Scholar
Fang, Y., Wang, L., Xin, Z., Zhao, L., An, X. and Hu, Q. (2008). Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. Journal of Agricultural and Food Chemistry 56:20792084. doi: 10.1021/jf800150zGoogle Scholar
Fang, Y., Zhang, Y., Catron, B., Chan, Q., Hu, Q. and Caruso, J. (2009). Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium enriched rice via foliar application. Journal of Analytical Atomic Spectrom 24:16571664. doi: 10.1039/B912538HGoogle Scholar
Feeney, K. A., Heard, P. J., Zhao, F. J. and Shewry, P. R. (2003). Determination of the distribution of sulphur in wheat starchy endosperm cells using secondary ion mass spectrometry (SIMS) combined with isotope enhancement. Journal of Cereal Science 37:311318. doi: 10.1006/jcrs.2002.0511Google Scholar
Galinha, C., Freitas, M., Pacheco, A. M., Coutinho, J., Maçãs, B. and Almeida, A. S. (2013). Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions. Journal of Radioanalytical Nuclear Chemistry 297:227231. doi: 10.1007/s10967-012-2372-zGoogle Scholar
Graham, R., Senadhira, D., Beebe, S., Iglesias, C. and Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Research 60:5780. doi: 10.1016/S0378-4290(98)00133-6.Google Scholar
Hu, Q., Chen, L., Xu, J., Zhang, Y. and Pan, G. (2002). Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertilizer or sodium selenite on the selenium content of rice. Journal Science Food and Agriculture 82:869872. https://doi.org/10.1002/jsfa.1115Google Scholar
Itani, T., Tamaki, M., Arai, E. and Horino, T. S. (2002). Distribution of amylose, nitrogen, and minerals in rice kernels with various character. Journal of Agricultural and Food Chemistry 50:53265332. doi: 10.1021/jf020073x.Google Scholar
Kennedy, G. and Burlingame, B. (2003). Analysis of food composition data on rice from a plant genetic resources perspective. Food Chemistry 80:589596. https://doi.org/10.1016/S0308-8146(02)00507-1Google Scholar
Li, H. F., McGrath, S. P. and Zhao, F. J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist 178:92102. https://doi.org/10.1111/j.1469-8137.2007.02343.xGoogle Scholar
Li, Y., Liu, K. and Chen, F. (2016). Effect of selenium enrichment on the quality of germinated brown rice during storage. Food Chemistry 207:2026.Google Scholar
Longchamp, M., Angeli, N. and Castrec-Rouelle, M. (2013). Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant and Soil 362:107117. doi: 10.1007/s11104-012-1259-7Google Scholar
Lucca, P., Poletti, S. and Sautter, C. (2006). Genetic engineering approaches to enrich rice with iron and vitamin A. Physiologiae Plantarum 126:291303. https://doi.org/10.1111/j.1399-3054.2006.00609.xGoogle Scholar
Meenakshi, J. V., Johnson, N. L., Manyong, V. M., DeGroote, H. and Javelosa, J. (2010). How costeffective is biofortification in combating micronutrient malnutrition?. World Development 38 (1):6475. doi: 10.1016/j.worlddev.2009.03.014Google Scholar
Moore, K. L., Schröder, M., Lombi, E., Zhao, F. J., McGrath, S. P., Hawkesford, M. J. and Grovenor, C. R. (2010). NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytologist 185:434445. doi: 10.1111/j.1469-8137.2009.03071.xGoogle Scholar
Nestel, P., Bouis, H. E., Meenakshi, J. V. and Pfeiffer, W. (2006). Biofortification of staple food crops. Journal of Nutrition 136:10641067.Google Scholar
Oliveira, K., Pataco, I. M., Mourinho, M. P., Santos, C., Pelica, J., Ramalho, J. C., Leitão, A. E., Scotti-Campos, P., Lidon, F. C., Reboredo, F. H. and Pessoa, M. F. (2015). Selenium biofortification in rice – A pragmatic perspective. Emirates Journal of Food and Agriculture 27 (3):321341. doi: 10.9755/ejfa.v27i3.19285Google Scholar
Ozturk, L., Yazici, M. A., Yucel, C., Torun, C. C., Bagci, A., Ozkan, H. and Sayers, Z. I. (2006). Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum 128:144152. doi: 10.1111/j.1399-3054.2006.00737.xGoogle Scholar
Pataco, I. M., Lidon, F. C., Ramos, I., Oliveira, K., Guerra, M., Pessoa, M. F., Carvalho, M. L., Ramalho, J. C., Leitão, A. E., Santos, J. P., Campos, P. S., Silva, M. M., Pais, I. P. and Reboredo, F. H. (2017). Biofortification of durum wheat (Triticum turgidum L. ssp. Durum (Desf.) Husnot) grains with nutrients. Journal of Plant Interactions 12:3950. doi: 10.1080/17429145.2016.1278049Google Scholar
Poblaciones, M. J., Rodrigo, S., Santamaría, O., Chen, Y. and McGrath, S. (2014). Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chemistry 146:378384. doi: 10.1016/j.foodchem.2013.09.070Google Scholar
Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E. M., Avila, F. W., Carvalho, G. S., Bastos, C. E. A. and Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil and Environment 56:584588.Google Scholar
Shinmachi, F., Buchner, P., Stroud, J. L., Parmar, S., Zhao, F. J. and McGrath, S. P. (2010). Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiology 153:327336. doi: 10.1104/pp.110.153759Google Scholar
Sors, T. G., Ellis, D. R. and Salt, D. E. (2005). Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research 86:373389. doi: 10.1007/s11120-005-5222-9Google Scholar
Sun, G. X., Liu, X., Williams, P. N. and Zhu, Y. G. (2010). Distribution and translocation of selenium from soil to grain and its speciation in paddy fields (Oryza sativa L.). Environmental Science and Technology 44:67066711. doi: 10.1021/es101843xGoogle Scholar
Takahashi, M., Nozoye, T., Kitajima, N., Fukuda, N., Hokura, A., Terada, Y. and Nishizawa, N. K. (2009). In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microrray and X-ray fluorescence imaging of Fe, Zn, Mn, and Cu. Plant and Soil 325:3951. doi: 10.1007/s11104-009-0045-7Google Scholar
Wang, K. M., Wu, J. G., Li, G., Zhang, D. P., Yang, Z. W. and Shi, C. H. (2011). Distribution of phytic acid and mineral elements in three indica rice (Oryza sativa L.) cultivars. Journal of Cereal Science 54:116121. doi: 10.1016/j.jcs.2011.03.002Google Scholar
Wang, Y. D., Wang, X. and Wong, Y. S. (2013). Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chemistry 141 (3):23852393. doi: 10.1016/j.foodchem.2013.05.095Google Scholar
White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., Meachan, M. C., Mead, A., Harriman, M. and Trueman, L. J. (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany 55:19271937.Google Scholar
White, P. J. and Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science 10:586593. doi: 10.1016/j.tplants.2005.10.001Google Scholar
White, P. J., Broadley, M. R., Bowen, H. C. and Johnson, S. E. (2007). Selenium and its relation with sulfur. In Sulfur in Plants – An Ecological Perspective, 225252 (Eds Hawesford, M. J. and De Kok, L. J.), Dordrecht, The Netherlands: Springer, vol 6.Google Scholar
Williams, P. M., Lombi, E., Sun, G. X., Scheckel, K., Zhu, Y. G., Feng, X., Zhu, J., Carey, A. M., Adomako, E., Lawgali, Y., Deacon, C. and Meharg, A. A. (2009). Selenium characterization in the global rice supply chain. Environmental Science and Technology 43:60246030. doi: 10.1021/es900671mGoogle Scholar
Wissuwa, M., Ismail, A. M. and Yanagihara, S. (2006). Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology 146:731741. doi: 10.1104/pp.106.085225Google Scholar
Zayed, A., Lytle, C. M. and Terry, N. (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284292. https://doi.org/10.1007/s004250050Google Scholar
Zhang, H., Feng, X. B., Chan, H. M. and Larssen, T. (2014). New insights into traditional health risk assessments of mercury exposure: implications of selenium. Environmental Science and Technology 48 (2):12061212. doi: 10.1021/es4051082.Google Scholar
Supplementary material: Image

Lidon et al. supplementary material 1

Supplementary Figure

Download Lidon et al. supplementary material 1(Image)
Image 3.4 MB
Supplementary material: Image

Lidon et al. supplementary material 2

Supplementary Figure

Download Lidon et al. supplementary material 2(Image)
Image 6.2 MB