Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T12:05:53.647Z Has data issue: false hasContentIssue false

Molecular basis of iron-loading disorders

Published online by Cambridge University Press:  08 November 2010

Deepak Darshan
Affiliation:
Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
David M. Frazer
Affiliation:
Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
Gregory J. Anderson*
Affiliation:
Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
*
*Corresponding author: Gregory J. Anderson, Iron Metabolism Laboratory, Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia. E-mail: greg.anderson@qimr.edu.au

Abstract

Iron-loading disorders (haemochromatosis) represent an important class of human diseases. Primary iron loading results from inherited disturbances in the mechanisms regulating intestinal iron absorption, such that excess iron is taken up from the diet. Body iron load can also be increased by repeated blood transfusions (secondary iron loading), usually as part of the treatment for various haematological disorders. In these syndromes, an element of enhanced iron absorption is also often involved. The central regulator of body iron trafficking is the liver-derived peptide hepcidin. Hepcidin limits iron entry into the plasma from macrophages, intestinal enterocytes and other cells by binding to the sole iron-export protein ferroportin, and facilitating its removal from the plasma membrane. Mutations in hepcidin or its upstream regulators (HFE, TFR2, HFE2 and BMP6) lead to reduced or absent hepcidin expression and a concomitant increase in iron absorption. Mutations in ferroportin that prevent hepcidin binding produce a similar result. Increased ineffective erythropoiesis, which often characterises erythrocyte disorders, also leads to reduced hepcidin expression and increased absorption. Recent advances in our understanding of hepcidin and body iron homeostasis provide the potential for a range of new diagnostic and therapeutic tools for haemochromatosis and related conditions.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Zimmermann, M.B. and Hurrell, R.F. (2007) Nutritional iron deficiency. Lancet 370, 511-520CrossRefGoogle ScholarPubMed
2O'Neil, J. and Powell, L. (2005) Clinical aspects of hemochromatosis. Seminars in Liver Disease 25, 381-391CrossRefGoogle ScholarPubMed
3Lee, P.L. and Beutler, E. (2009) Regulation of hepcidin and iron-overload disease. Annual Review of Pathology 4, 489-515CrossRefGoogle ScholarPubMed
4Gattermann, N. (2009) The treatment of secondary hemochromatosis. Deutsches Arzteblatt International 106, 499-504Google ScholarPubMed
5Rechavi, G. and Rivella, S. (2008) Regulation of iron absorption in hemoglobinopathies. Current Molecular Medicine 8, 646-662CrossRefGoogle ScholarPubMed
6Forth, W. and Rummel, W. (1973) Iron absorption. Physiological Reviews 53, 724-792CrossRefGoogle ScholarPubMed
7Brittenham, G.M. (1994) The red cell cycle. In Iron Metabolism in Health & Disease (Brock, J.H., Halliday, J.W. and Pippard, M.J., eds), pp. 31-62, W.B. Saunders Company Ltd, London, UKGoogle Scholar
8Powell, L.W., Jazwinska, E. and Halliday, J.W. (1994) Primary iron overload. In Iron Metabolism in Health and Disease (Brock, J.H., Halliday, J.W. and Pippard, M.J., eds), pp. 227-270, W.B. Saunders Company Ltd, London, UKGoogle Scholar
9McKie, A.T. et al. (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755-1759CrossRefGoogle ScholarPubMed
10Fleming, M.D. et al. (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proceedings of National Academy of Sciences USA 95, 1148-1153CrossRefGoogle ScholarPubMed
11Gunshin, H. et al. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482-488CrossRefGoogle ScholarPubMed
12Abboud, S. and Haile, D.J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. Journal of Biological Chemistry 275, 19906-19912CrossRefGoogle ScholarPubMed
13Donovan, A. et al. (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776-781CrossRefGoogle ScholarPubMed
14McKie, A.T. et al. (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular Cell 5, 299-309CrossRefGoogle ScholarPubMed
15Vulpe, C.D. et al. (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genetics 21, 195-199CrossRefGoogle ScholarPubMed
16Conrad, M.E. Jr and Crosby, W.H. (1963) Intestinal mucosal mechanisms controlling iron absorption. Blood 22, 406-415CrossRefGoogle ScholarPubMed
17Conrad, M.E., Weintraub, L.R. and Crosby, W.H. (1964) The role of the intestine in iron kinetics. Journal of Clinical Investigation 43, 963-974CrossRefGoogle ScholarPubMed
18Frazer, D.M. et al. (2003) A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut 52, 340-346CrossRefGoogle ScholarPubMed
19Chen, H. et al. (2003) Systemic regulation of hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood 102, 1893-1899CrossRefGoogle ScholarPubMed
20Huebers, H.A. and Finch, C.A. (1987) The physiology of transferrin and transferrin receptors. Physiological Reviews 67, 520-582CrossRefGoogle ScholarPubMed
21Anderson, G.J. et al. (2007) Regulation of systemic iron homeostasis: how the body responds to changes in iron demand. Biometals 20, 665-674CrossRefGoogle ScholarPubMed
22Donovan, A. et al. (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism 1, 191-200CrossRefGoogle ScholarPubMed
23Nemeth, E. and Ganz, T. (2009) The role of hepcidin in iron metabolism. Acta Haematologica 122, 78-86CrossRefGoogle ScholarPubMed
24Nemeth, E. et al. (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. Journal of Clinical Investigation 113, 1271-1276CrossRefGoogle Scholar
25Allen, K.J. et al. (2008) Iron-overload-related disease in HFE hereditary hemochromatosis. New England Journal of Medicine 358, 221-230CrossRefGoogle ScholarPubMed
26Neves, J.V. et al. Hemochromatosis and pregnancy: iron stores in the Hfe-/- mouse are not reduced by multiple pregnancies. American Journal of Physiology Gastrointestinal and Liver Physiology 298, G525-G529CrossRefGoogle Scholar
27Benyamin, B. et al. (2009) Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. American Journal of Human Genetics 84, 60-65CrossRefGoogle ScholarPubMed
28Galaris, D. and Pantopoulos, K. (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Critical Reviews in Clinical Laboratory Sciences 45, 1-23CrossRefGoogle ScholarPubMed
29Ramm, G.A. and Ruddell, R.G. (2005) Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis. Seminars in Liver Disease 25, 433-449CrossRefGoogle ScholarPubMed
30Camaschella, C. et al. (2000) The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nature Genetics 25, 14-15CrossRefGoogle Scholar
31Chloupkova, M., Zhang, A.S. and Enns, C.A. (2010) Stoichiometries of transferrin receptors 1 and 2 in human liver. Blood Cells Molecules and Diseases 44, 28-33CrossRefGoogle ScholarPubMed
32Kawabata, H. et al. (2000) Transferrin receptor 2-alpha supports cell growth both in iron-chelated cultured cells and in vivo. Journal of Biological Chemistry 275, 16618-16625CrossRefGoogle ScholarPubMed
33Fleming, R.E. et al. (2002) Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proceedings of the National Academy of Sciences of the United States of America 99, 10653-10658CrossRefGoogle ScholarPubMed
34Kawabata, H. et al. (2005) Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood 105, 376-381CrossRefGoogle ScholarPubMed
35Nemeth, E. et al. (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105, 1803-1806CrossRefGoogle ScholarPubMed
36Pietrangelo, A. (2005) Non-HFE hemochromatosis. Seminars in Liver Disease 25, 450-460CrossRefGoogle ScholarPubMed
37Wallace, D.F. et al. (2009) Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology 50, 1992-2000CrossRefGoogle ScholarPubMed
38De Gobbi, M. et al. (2002) Natural history of juvenile haemochromatosis. British Journal of Haematology 117, 973-979CrossRefGoogle ScholarPubMed
39Papanikolaou, G. et al. (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nature Genetics 36, 77-82CrossRefGoogle ScholarPubMed
40Roetto, A. et al. (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nature Genetics 33, 21-22CrossRefGoogle ScholarPubMed
41De Domenico, I. et al. (2006) Iron overload due to mutations in ferroportin. Haematologica 91, 92-95Google ScholarPubMed
42McCance, R.A. and Widdowson, E.M. (1937) Absorption and excretion of iron. Lancet ii, 5Google Scholar
43Yang, L.P., Keam, S.J. and Keating, G.M. (2007) Deferasirox : a review of its use in the management of transfusional chronic iron overload. Drugs 67, 2211-2230CrossRefGoogle ScholarPubMed
44Vichinsky, E. (2008) Clinical application of deferasirox: practical patient management. American Journal of Hematology 83, 398-402CrossRefGoogle ScholarPubMed
45Li, H. et al. (2010) Transferrin therapy ameliorates disease in beta-thalassemic mice. Nature Medicine 16, 177-182CrossRefGoogle ScholarPubMed
46Wheby, M.S. (1978) Medicinal iron-induced hepatic cirrhosis: reversal by phlebotomy: studies on pathogenesis. Transactions of the American Clinical and Climatological Association 89, 100-108Google ScholarPubMed
47Gordeuk, V.R. (2002) African iron overload. Seminars in Hematology 39, 263-269CrossRefGoogle ScholarPubMed
48Hamill, R.L., Woods, J.C. and Cook, B.A. (1991) Congenital atransferrinemia. A case report and review of the literature. American Journal of Clinical Pathology 96, 215-218CrossRefGoogle ScholarPubMed
49Morita, H. et al. (1995) Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Annals of Neurology 37, 646-656CrossRefGoogle ScholarPubMed
50Whitington, P.F. (2007) Neonatal hemochromatosis: a congenital alloimmune hepatitis. Seminars in Liver Disease 27, 243-250CrossRefGoogle ScholarPubMed
51Deugnier, Y. and Turlin, B. (2007) Pathology of hepatic iron overload. World Journal of Gastroenterology 13, 4755-4760CrossRefGoogle ScholarPubMed
52Sarkany, R.P. (2001) The management of porphyria cutanea tarda. Clinical Experimental Dermatology 26, 225-232CrossRefGoogle ScholarPubMed
53Hutchinson, C. et al. (2008) Post-prandial iron absorption in humans: comparison between HFE genotypes and iron deficiency anaemia. Clinical Nutrition 27, 258-263CrossRefGoogle ScholarPubMed
54McLaren, G.D. et al. (1991) Regulation of intestinal iron absorption and mucosal iron kinetics in hereditary hemochromatosis. Journal of Laboratory Clinical Medicine 117, 390-401Google ScholarPubMed
55Cazzola, M. et al. (1983) Juvenile idiopathic haemochromatosis: a life-threatening disorder presenting as hypogonadotropic hypogonadism. Human Genetics 65, 149-154CrossRefGoogle ScholarPubMed
56Bridle, K.R. et al. (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361, 669-673CrossRefGoogle ScholarPubMed
57Spasic, M.V. et al. (2008) Hfe acts in hepatocytes to prevent hemochromatosis. Cell Metabolism 7, 173-178CrossRefGoogle Scholar
58Vujic Spasic, M. et al. (2007) Physiologic systemic iron metabolism in mice deficient for duodenal Hfe. Blood 109, 4511-4517CrossRefGoogle ScholarPubMed
59Babitt, J.L. et al. (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nature Genetics 38, 531-539CrossRefGoogle ScholarPubMed
60Chen, D., Zhao, M. and Mundy, G.R. (2004) Bone morphogenetic proteins. Growth Factors 22, 233-241CrossRefGoogle ScholarPubMed
61Xia, Y. et al. (2008) Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood 111, 5195-5204CrossRefGoogle Scholar
62Truksa, J. et al. (2009) Suppression of the hepcidin-encoding gene Hamp permits iron overload in mice lacking both hemojuvelin and matriptase-2/TMPRSS6. British Journal of Haematology 147, 571-581CrossRefGoogle ScholarPubMed
63Wang, R.H. et al. (2005) A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metabolism 2, 399-409CrossRefGoogle ScholarPubMed
64Mleczko-Sanecka, K. et al. (2010) SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression. Blood 115, 2657-2665CrossRefGoogle ScholarPubMed
65Babitt, J.L. et al. (2007) Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. Journal of Clinical Investigation 117, 1933-1939CrossRefGoogle ScholarPubMed
66Andriopoulos, B. Jr. et al. (2009) BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nature Genetics 41, 482-487CrossRefGoogle ScholarPubMed
67Meynard, D. et al. (2009) Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nature Genetics 41, 478-481CrossRefGoogle ScholarPubMed
68Kautz, L. et al. (2008) Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112, 1503-1509CrossRefGoogle ScholarPubMed
69Lee, D.H. et al. (2010) Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin expression and iron homeostasis. Blood 115, 3136-3145CrossRefGoogle ScholarPubMed
70Zhang, A.S. et al. (2009) Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. Journal of Biological Chemistry 284, 22580-22589CrossRefGoogle ScholarPubMed
71Du, X. et al. (2008) The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, 1088-1092CrossRefGoogle ScholarPubMed
72Lin, L., Goldberg, Y.P. and Ganz, T. (2005) Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood 106, 2884-2889CrossRefGoogle ScholarPubMed
73Silvestri, L., Pagani, A. and Camaschella, C. (2008) Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 111, 924-931CrossRefGoogle ScholarPubMed
74Zhang, A.S. et al. (2007) Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. Journal of Biological Chemistry 282, 12547-12556CrossRefGoogle ScholarPubMed
75Folgueras, A.R. et al. (2008) Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 112, 2539-2545CrossRefGoogle ScholarPubMed
76Finberg, K.E. et al. (2008) Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nature Genetics 40, 569-571CrossRefGoogle ScholarPubMed
77Guillem, F. et al. (2008) Two nonsense mutations in the TMPRSS6 gene in a patient with microcytic anemia and iron deficiency. Blood 112, 2089-2091CrossRefGoogle Scholar
78Chambers, J.C. et al. (2009) Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nature Genetics 41, 1170-1172CrossRefGoogle ScholarPubMed
79Ganesh, S.K. et al. (2009) Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature Genetics 41, 1191-1198CrossRefGoogle ScholarPubMed
80Tanaka, T. et al. (2010) A genome-wide association analysis of serum iron concentrations. Blood 115, 94-96CrossRefGoogle ScholarPubMed
81Silvestri, L. et al. (2008) The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metabolism 8, 502-511CrossRefGoogle ScholarPubMed
82Finberg, K.E. et al. (2010) Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood 115, 3817-3826CrossRefGoogle ScholarPubMed
83Frazer, D.M. et al. (2004) Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut 53, 1509-1515CrossRefGoogle ScholarPubMed
84Peyssonnaux, C. et al. (2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). Journal of Clinical Investigation 117, 1926-1932CrossRefGoogle ScholarPubMed
85Tanno, T. et al. (2009) Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 114, 181-186CrossRefGoogle ScholarPubMed
86Tanno, T. et al. (2007) High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nature Medicine 13, 1096-1101CrossRefGoogle ScholarPubMed
87Kanda, J. et al. (2008) Serum hepcidin level and erythropoietic activity after hematopoietic stem cell transplantation. Haematologica 93, 1550-1554CrossRefGoogle ScholarPubMed
88Chang, C. et al. (2001) Twisted gastrulation can function as a BMP antagonist. Nature 410, 483-487CrossRefGoogle ScholarPubMed
89Ross, J.J. et al. (2001) Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410, 479-483CrossRefGoogle ScholarPubMed
90Nicolas, G. et al. (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. Journal of Clinical Investigation 110, 1037-1044CrossRefGoogle ScholarPubMed
91Agarwal, N. and Prchal, J.T. (2009) Anemia of chronic disease (anemia of inflammation). Acta Haematologica 122, 103-108CrossRefGoogle ScholarPubMed
92Wrighting, D.M. and Andrews, N.C. (2006) Interleukin-6 induces hepcidin expression through STAT3. Blood 108, 3204-3209CrossRefGoogle ScholarPubMed
93Wilkins, S.J. et al. (2006) Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood 107, 1659-1664CrossRefGoogle ScholarPubMed
94Huebers, H. et al. (1985) Molecular advantage of diferric transferrin in delivering iron to reticulocytes: a comparative study. Proceedings Proceedings of the Society for Experimental Biology and Medicine 179, 222-226CrossRefGoogle ScholarPubMed
95Buys, S.S. et al. (1991) Iron absorption in hypotransferrinemic mice. Blood 78, 3288-3290CrossRefGoogle ScholarPubMed
96Weinstein, D.A. et al. (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100, 3776-3781CrossRefGoogle ScholarPubMed
97Johnson, M.B. and Enns, C.A. (2004) Diferric transferrin regulates transferrin receptor 2 protein stability. Blood 104, 4287-4293CrossRefGoogle ScholarPubMed
98Gao, J. et al. (2009) Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metabolism 9, 217-227CrossRefGoogle ScholarPubMed
99Ramey, G., Deschemin, J.C. and Vaulont, S. (2009) Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica 94, 765-772CrossRefGoogle ScholarPubMed
100West, A.P. Jr et al. (2001) Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites. Journal of Molecular Biology 313, 385-397CrossRefGoogle ScholarPubMed
101Schmidt, P.J. et al. (2008) The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metabolism 7, 205-214CrossRefGoogle ScholarPubMed
102Andrews, N.C. (2008) Forging a field: the golden age of iron biology. Blood 112, 219-230CrossRefGoogle ScholarPubMed
103Calzolari, A. et al. (2006) TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. Journal of Cell Science 119, 4486-4498CrossRefGoogle ScholarPubMed
104Niederkofler, V., Salie, R. and Arber, S. (2005) Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. Journal of Clinical Investigation 115, 2180-2186CrossRefGoogle ScholarPubMed
105Nicolas, G. et al. (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences of theUnited States of America 98, 8780–8785CrossRefGoogle Scholar
106Bayele, H.K., McArdle, H. and Srai, S.K. (2006) Cis and trans regulation of hepcidin expression by upstream stimulatory factor. Blood 108, 4237-4245CrossRefGoogle ScholarPubMed
107Bridle, K. et al. (2006) Hepcidin is down-regulated in alcoholic liver injury: implications for the pathogenesis of alcoholic liver disease. Alcoholism: Clinical and Experimental Research 30, 106-112CrossRefGoogle ScholarPubMed
108Harrison-Findik, D.D. et al. (2006) Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. Journal of Biological Chemistry 281, 22974-22982CrossRefGoogle ScholarPubMed
109Flanagan, J.M., Peng, H. and Beutler, E. (2007) Effects of alcohol consumption on iron metabolism in mice with hemochromatosis mutations. Alcoholism: Clinical and Experimental Research 31, 138-143CrossRefGoogle ScholarPubMed
110Bayele, H.K. and Srai, S.K. (2009) Regulatory variation in hepcidin expression as a heritable quantitative trait. Biochemical and Biophysical Research Communications 384, 22-27CrossRefGoogle ScholarPubMed
111Andreani, M. et al. (2009) Association of hepcidin promoter c.-582 A > G variant and iron overload in thalassemia major. Haematologica 94, 1293-1296CrossRefGoogle Scholar
112Piperno, A. et al. (2007) Blunted hepcidin response to oral iron challenge in HFE-related hemochromatosis. Blood 110, 4096-4100CrossRefGoogle ScholarPubMed
113van Dijk, B.A. et al. (2008) Serum hepcidin levels are innately low in HFE-related haemochromatosis but differ between C282Y-homozygotes with elevated and normal ferritin levels. British Journal of Haematology 142, 979-985CrossRefGoogle ScholarPubMed
114Knittel, T. et al. (1997) Bone morphogenetic protein-6 is expressed in nonparenchymal liver cells and upregulated by transforming growth factor-beta 1. Experimental Cell Research 232, 263-269CrossRefGoogle ScholarPubMed
115Theurl, I. et al. (2008) Autocrine formation of hepcidin induces iron retention in human monocytes. Blood 111, 2392-2399CrossRefGoogle ScholarPubMed
116Nicolas, G. et al. (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nature Genetics 34, 97-101CrossRefGoogle Scholar
117Laftah, A.H. et al. (2004) Effect of hepcidin on intestinal iron absorption in mice. Blood 103, 3940-3944CrossRefGoogle ScholarPubMed
118Chung, B. et al. (2009) Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells. Journal of Nutrition 139, 1457-1462CrossRefGoogle ScholarPubMed
119Nemeth, E. (2010) Targeting the hepcidin-ferroportin axis in the diagnosis and treatment of anemias. Advances in Hematology 2010, 750643, doi: 10.1155/2010/750643CrossRefGoogle ScholarPubMed
120Paradkar, P.N. et al. (2008) Iron depletion limits intracellular bacterial growth in macrophages. Blood 112, 866-874CrossRefGoogle ScholarPubMed
121Gao, J. et al. (2010) Hepatocyte-targeted HFE and TFR2 control hepcidin expression in mice. Blood 115, 3374-3381CrossRefGoogle ScholarPubMed
122Sasu, B.J. et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood 115, 3616-3624CrossRefGoogle Scholar
123Ludwiczek, S. et al. (2007) Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nature Medicine 13, 448-454CrossRefGoogle ScholarPubMed
124Oudit, G.Y. et al. (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nature Medicine 9, 1187-1194CrossRefGoogle Scholar
125Sugishita, K. et al. (2009) A case of iron overload cardiomyopathy: beneficial effects of iron chelating agent and calcium channel blocker on left ventricular dysfunction. International Heart Journal 50, 829-838CrossRefGoogle ScholarPubMed
126Ganz, T. et al. (2008) Immunoassay for human serum hepcidin. Blood 112, 4292-4297CrossRefGoogle ScholarPubMed
127Grebenchtchikov, N. et al. (2009) High-sensitive radioimmunoassay for human serum hepcidin. British Journal of Haematology 146, 317-325CrossRefGoogle ScholarPubMed
128Busbridge, M. et al. (2009) Development of a novel immunoassay for the iron regulatory peptide hepcidin. British Journal of Biomedical Science 66, 150-157CrossRefGoogle ScholarPubMed
129Ward, D.G. et al. (2008) SELDI-TOF-MS determination of hepcidin in clinical samples using stable isotope labelled hepcidin as an internal standard. Proteome Science 6, 28CrossRefGoogle ScholarPubMed
130Kemna, E. et al. (2005) Novel urine hepcidin assay by mass spectrometry. Blood 106, 3268-3270CrossRefGoogle ScholarPubMed
131Murphy, A.T. et al. (2007) Quantitation of hepcidin from human and mouse serum using liquid chromatography tandem mass spectrometry. Blood 110, 1048-1054CrossRefGoogle ScholarPubMed
132Li, H. et al. (2009) Development of a method for the sensitive and quantitative determination of hepcidin in human serum using LC-MS/MS. Journal of Pharmacological and Toxicological Methods 59, 171-180CrossRefGoogle ScholarPubMed
133Kroot, J.J. et al. (2009) Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: need for standardization. Haematologica 94, 1748-1752CrossRefGoogle ScholarPubMed
134Iqbal, T. et al. (2009) Is iron overload in alcohol-related cirrhosis mediated by hepcidin? World Journal of Gastroenterology 15, 5864-5866CrossRefGoogle ScholarPubMed
135Peters, H.P. et al. (2010) Serum hepcidin-25 levels in patients with chronic kidney disease are independent of glomerular filtration rate. Nephrology, Dialysis, Transplantation 25, 848-853CrossRefGoogle ScholarPubMed
136van Deuren, M., Kroot, J.J. and Swinkels, D.W. (2009) Time-course analysis of serum hepcidin, iron and cytokines in a C282Y homozygous patient with Schnitzler's syndrome treated with IL-1 receptor antagonist. Haematologica 94, 1297-1300CrossRefGoogle Scholar
137Young, M.F. et al. (2009) Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young women. American Journal of Clinical Nutrition 89, 533-538CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Weiss, G. (2010) Genetic mechanisms and modifying factors in hereditary hemochromatosis. Nature Reviews Gastroenterology and Hepatology 7, 50-58CrossRefGoogle ScholarPubMed
Adams, P.C. and Barton, J.C. (2010) How I treat hemochromatosis. Blood 22, 317-325CrossRefGoogle Scholar
Pietrangelo, A. (2010) Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139, 393-408CrossRefGoogle ScholarPubMed