Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T07:43:37.076Z Has data issue: false hasContentIssue false

NONSURJECTIVE SATELLITE OPERATORS AND PIECEWISE-LINEAR CONCORDANCE

Published online by Cambridge University Press:  23 December 2016

ADAM SIMON LEVINE*
Affiliation:
Department of Mathematics, Princeton University, Princeton, NJ 08540, USA; asl2@math.princeton.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We exhibit a knot $P$ in the solid torus, representing a generator of first homology, such that for any knot $K$ in the 3-sphere, the satellite knot with pattern $P$ and companion $K$ is not smoothly slice in any homology 4-ball. As a consequence, we obtain a knot in a homology 3-sphere that does not bound a piecewise-linear disk in any homology 4-ball.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author 2016

References

Akbulut, S., ‘A solution to a conjecture of Zeeman’, Topology 30(3) (1991), 513515.Google Scholar
Cochran, T. D., Davis, C. W. and Ray, A., ‘Injectivity of satellite operators in knot concordance’, J. Topol. 7(4) (2014), 948964.Google Scholar
Cochran, T. D., Franklin, B. D., Hedden, M. and Horn, P. D., ‘Knot concordance and homology cobordism’, Proc. Amer. Math. Soc. 141(6) (2013), 21932208.CrossRefGoogle Scholar
Cochran, T. D. and Harvey, S., ‘The geometry of the knot concordance space’, Preprint, 2014, arXiv:1404.5076.Google Scholar
Davis, C. and Ray, A., ‘Satellite operators as group actions on knot concordance’, Algebr. Geom. Topol. 16(2) (2016), 945969.Google Scholar
Eftekhary, E., ‘Longitude Floer homology and the Whitehead double’, Algebr. Geom. Topol. 5 (2005), 13891418 (electronic).Google Scholar
Freedman, M. H., ‘The topology of four-dimensional manifolds’, J. Differential Geom. 17(3) (1982), 357453.Google Scholar
Freedman, M. H. and Quinn, F., Topology of 4-manifolds, Princeton Mathematical Series, 39 (Princeton University Press, Princeton, NJ, 1990).Google Scholar
Hedden, M. and Levine, A. S., ‘Splicing knot complements and bordered Floer homology’, J. Reine Angew. Math. 720 (2016), 129154.Google Scholar
Hom, J., ‘Bordered Heegaard Floer homology and the tau-invariant of cable knots’, J. Topol. 7(2) (2014), 287326.Google Scholar
Hom, J., ‘The knot Floer complex and the smooth concordance group’, Comm. Math. Helv. 89(3) (2014), 537570.Google Scholar
Hom, J., ‘An infinite rank summand of topologically slice knots’, Geom. Topol. 19 (2015), 10631110.Google Scholar
Huang, Y. and Ramos, V. G. B., ‘An absolute grading on Heegaard Floer homology by homotopy classes of oriented 2-plane fields’, 2011, arXiv:1112.0290, to appear in J. Symplectic Geom.Google Scholar
Huang, Y. and Ramos, V. G. B., ‘A topological grading on bordered Heegaard Floer homology’, Quantum Topol. 6(3) (2015), 403449.Google Scholar
Juhász, A., ‘Holomorphic discs and sutured manifolds’, Algebr. Geom. Topol. 6 (2006), 14291457.Google Scholar
Kirby, R. (Ed.), Problems in Low-dimensional Topology, AMS/IP Studies in Advanced Mathematics, 2 (American Mathematical Society, Providence, RI, 1997).Google Scholar
Levine, A. S., ‘Knot doubling operators and bordered Heegaard Floer homology’, J. Topol. 5(3) (2012), 651712.Google Scholar
Lipshitz, R., Ozsváth, P. S. and Thurston, D. P., ‘Bordered Heegaard Floer homology: invariance and pairing’, 2008, arXiv:0810.0687, to appear in Mem. Amer. Math. Soc.Google Scholar
Lipshitz, R., Ozsváth, P. S. and Thurston, D. P., ‘Computing HF̂ by factoring mapping classes’, Geom. Topol. 18 (2014), 25472681.Google Scholar
Lipshitz, R., Ozsváth, P. S. and Thurston, D. P., ‘Bimodules in bordered Heegaard Floer homology’, Geom. Topol. 19 (2015), 525724.Google Scholar
Mazur, B., ‘A note on some contractible 4-manifolds’, Ann. of Math. (2) 73 (1961), 221228.Google Scholar
Ozsváth, P. S. and Szabó, Z., ‘Knot Floer homology and the four-ball genus’, Geom. Topol. 7 (2003), 615639 (electronic).Google Scholar
Ozsváth, P. S. and Szabó, Z., ‘Holomorphic disks and knot invariants’, Adv. Math. 186(1) (2004), 58116.Google Scholar
Ozsváth, P. S. and Szabó, Z., ‘Knot Floer homology and rational surgeries’, Algebr. Geom. Topol. 11(1) (2011), 168.Google Scholar
Ozsváth, P. S., Szabó, Z. and Thurston, D. P., ‘Legendrian knots, transverse knots and combinatorial Floer homology’, Geom. Topol. 12(2) (2008), 941980.Google Scholar
Petkova, I., ‘Cables of thin knots and bordered Heegaard Floer homology’, Quantum Topol. 4(4) (2013), 377409.CrossRefGoogle Scholar
Rasmussen, J. A., ‘Floer homology and knot complements’, PhD Thesis, Harvard University, 2003, arXiv:math/0509499.Google Scholar
Ray, A., ‘Satellite operators with distinct iterates in smooth concordance’, Proc. Amer. Math. Soc. 143(11) (2015), 50055020.Google Scholar
Zarev, R., ‘Bordered Floer homology for sutured manifolds’, Preprint, 2009, arXiv:0908.1106.Google Scholar
Zeeman, E. C., ‘On the dunce hat’, Topology 2 (1964), 341358.Google Scholar
Zhan, B., ‘Computations in bordered Heegaard Floer homology’, software package available at http://github.com/bzhan/bfh_python, 2014.Google Scholar