Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T05:36:35.541Z Has data issue: false hasContentIssue false

Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants

Published online by Cambridge University Press:  28 January 2014

Brígida María Ruiz-Rodríguez
Affiliation:
Fac Farm., Univ. Complut. Madrid (UCM), Pza. Ramón y Cajal, s/n, ES-28040 Madrid Spain
Begoña de Ancos*
Affiliation:
Inst. Cienc. Tecnol. Aliment. Nutr., Cons. Super. Investig. Cient. (ICTAN-CSIC), José Antonio Novais 10, ES-28040 Madrid, Spain. ancos@ictan.csic.es
Concepción Sánchez-Moreno
Affiliation:
Inst. Cienc. Tecnol. Aliment. Nutr., Cons. Super. Investig. Cient. (ICTAN-CSIC), José Antonio Novais 10, ES-28040 Madrid, Spain. ancos@ictan.csic.es
Virginia Fernández-Ruiz
Affiliation:
Fac Farm., Univ. Complut. Madrid (UCM), Pza. Ramón y Cajal, s/n, ES-28040 Madrid Spain
María de Cortes Sánchez-Mata
Affiliation:
Fac Farm., Univ. Complut. Madrid (UCM), Pza. Ramón y Cajal, s/n, ES-28040 Madrid Spain
Montaña Cámara
Affiliation:
Fac Farm., Univ. Complut. Madrid (UCM), Pza. Ramón y Cajal, s/n, ES-28040 Madrid Spain
Javier Tardío
Affiliation:
Inst. Madr. Investig. Desarro. Rural. Agrar Aliment. (IMIDRA), Finca “El Encín”, Apdo. 127, ES-28800, Alcalá de Henares, Madrid, Spain
*
*Correspondence and reprints
Get access

Abstract

Introduction. Many underutilized wild fruits have great nutritional and functional potential, providing chemical compounds with biological properties. Materials and methods. In the present work we quantified bioactive compounds such as vitamin C (ascorbic and dehydroascorbic acids), and total phenolic compounds composed mainly of phenolic acids, flavonols and anthocyanins, as well as evaluating the antioxidant capacity through different in vitro tests (Folin-Ciocalteu, ABTS·+, DPPH· and FRAP) in wild blackthorn (P. spinosa L.) and hawthorn (C. monogyna Jacq.) fruits of Spanish origin, including samples from different seasons and locations. Results and discussion. As expected, wide variability was found in the composition of fruits of the same species, which justifies the necessity of analyzing several batches of wild fruits, in order to have representative results taking into account the natural variability. Fruits of P. spinosa showed vitamin C content ranging between (5.14 and 15.35) mg·100 g–1 fw (mainly dehydroascorbic acid); total phenolic compounds ranged from (1851 to 3825) mg·100 g–1 fw, characterized by a high content of anthocyanins and phenolic acids. Fruits of C. monogyna presented (16 to 39) mg vitamin C·100 g–1 fw and (449 to 1438) mg total phenolic compounds·100 g–1 fw, characterized by a high content of phenolic acids and flavonols. Antioxidant capacity was higher for P. spinosa fruits than for C. monogyna fruits; DPPH· values showed a strong correlation with vitamin C, while phenolic compounds were a major contributor to the antioxidant activity of these fruit extracts. Fruits of P. spinosa and C. monogyna should be reconsidered as new valuable sources of safe and inexpensive antioxidants.

Type
Original article
Copyright
© 2014 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martínez-Cayuela, M., Oxygen free radicals and human disease, Biochimie. 77 (1995) 147161. CrossRefGoogle ScholarPubMed
Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., Telser, J., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell. Biol. 39 (2007) 4484. CrossRefGoogle ScholarPubMed
Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T., Tatematsu, M., Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis, Food Chem. Toxicol. 24 (1986) 10711082. CrossRefGoogle ScholarPubMed
Botella, M.A., Obón, C., Egea, I., Romojaro, F., Pretel, M.T., Propiedades físico-químicas y antioxidantes de frutos recolectados tradicionalmente en la provincia de Albacete, Acta Hortic. 48 (2007) 662665. Google Scholar
Ganry, J., Will fruits and vegetables now be part of the international agenda? Fruits 68 (1) (2013) 12. CrossRefGoogle Scholar
Pereira, C., Barros, L., Carvalho, A.M., Ferreira, I., Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets, Food Res. Int. 44 (2011) 26342640. CrossRefGoogle Scholar
Pardo-de-Santayana, M., Tardío, J., Blanco, E., Carvalho, A.M., Lastra, J.J., San Miguel, E., Morales, R., Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): a compartative study, J. Ethnobiol. Ethnomed. 3 (27) (2007) 111. Google Scholar
Ruiz-Rodríguez, B.M., Morales, P., Fernández-Ruiz, V., Sánchez-Mata, M.C., Cámara, M., Díez-Marqués, C., Pardo-de-Santayana, M., Molina, M., Tardío, J., Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data, Food Res. Int. 44 (2011) 12441253. CrossRefGoogle Scholar
Barros, L., Carvalho, A.M., Ferreira, I.C.F.R., Comparing the composition and bioactivity of Crataegus monogyna flowers and fruits used in folk medicine, Phytochem. Anal. 22 (2010) 181188. CrossRefGoogle ScholarPubMed
Tardio, J., Pardo de Santayana, M., Morales, R., Ethnobotanical review of wild edible plants in Spain, Bot. J. Linn. Soc. 152 (2006) 2771. CrossRefGoogle Scholar
Jablonska-Rys, E., Zalewska-Korona, M., Kalbarczyk, J., Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits, J. Fruit Ornam. Plant Res. 17 (2) (2009) 115120. Google Scholar
Chang, Q., Zuo, Z., Harrison, F., Chow, M.S.S., Hawthorn, J. Clin. Pharmacol. 42 (2002) 605612. CrossRefGoogle ScholarPubMed
Özcan, M., Haciseferogullari, H., MaraKoglu, T., Arslan, D., Hawthorn (Crataegus spp.) fruit: some physical and chemical properties, J. Food Eng. 69 (2005) 409413. CrossRefGoogle Scholar
Muñoz-Garmedia F., Navarro C., Aedo C., Crataegus, in: Castroviejo S., Aedo C., Laínz M., Muñoz Garmendia F., Nieto Feliner G., Paiva J., Benedí C. (Eds.), Flora ibérica , vol. 6., CSIC, Madrid, Spain, 1998, pp. 404–414.
Blanca G., Díaz de la Guardia C., Prunus, in: Castroviejo S., Aedo C., Laínz M., Muñoz Garmendia F., Nieto Feliner G., Paiva J., Benedí C. (Eds.), Flora ibérica , vol. 6., CSIC, Madrid, Spain, 1998, pp. 444–466.
Horwitz W., Latimer G.W., Official methods of analysis of AOAC international (18th ed.), Gaithersburg, USA, 2005.
Sánchez Mata, M.C., Cabrera Loera, R.D., Morales, P., Fernández-Ruiz, V., Cámara, M., Díez Marqués, C., Pardo-de-Santayana, M., Tardío, J., Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds, Genet. Resour. Crop. Evol. 59 (2012) 431443. CrossRefGoogle Scholar
Pérez-Jiménez, J., Arranz, S., Saura-Calixto, F., Proanthocyanidin content in foods is largely underestimated in the literature data: An approach to quantification of the missing proanthocyanidins, Food Res. Int. 42 (10) (2006) 13811388. CrossRefGoogle Scholar
Huang, D., Ou, B., Prior, R.L., The chemistry behind antioxidant capacity assays, J. Agric. Food Chem. 53 (2005) 18411856. CrossRefGoogle ScholarPubMed
Singleton, V.L., Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents, Am. J. Enol. Vitic. 16 (3) (1965) 44158. Google Scholar
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 12311237. CrossRefGoogle ScholarPubMed
Sánchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F., A procedure to measure the antiradical efficiency of polyphenols, J. Sci. 76 (1998) 270276. Google Scholar
Benzie, I.F.F., Strain, J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay, Anal. Biochem. 239 (1) (1996) 7076. CrossRefGoogle ScholarPubMed
Fang, F., Li, J.M., Zhang, P., Tang, K., Wang, W., Pan, Q.H., Huang, W.D., Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines, Food Res. Int. 41 (2008) 5360. CrossRefGoogle Scholar
Patel, P.R., Gol, N.B., Rao, T.V.R., Physiochemical changes in sunberry (Physalis minima L.) fruit during growth and ripening, Fruits 66 (2011) 3746. CrossRefGoogle Scholar
Ganhao, R., Estévez, M., Kylli, P., Heinonen, M., Morcuende, D., Characterization of selected wild Mediterranean fruits and comparative efficacy as inhibitors of oxidative reactions in emulsified raw pork burger patties, J. Agric. Food. Chem. 58 (2010) 88548861. CrossRefGoogle Scholar
Edwards, J.E., Brown, P.N., Talent, N., Dickinson, T.A., Shipley, P.R., A review of the chemistry of the genus Crataegus, Phytochemistry 79 (2012) 526. CrossRefGoogle Scholar
Soto-Vaca, A., Gutierrez, A., Losso, J.N., Xu, Z.Finley, J.W., Evolution of phenolic compounds from color and flavor problems to health benefits, J. Agric. Food. Chem. 60 (2012) 66586677. CrossRefGoogle ScholarPubMed
Egea, I., Sánchez-Bel, P., Romojaro, F., Pretel, M.T., Six edible wild fruits as potential antioxidant additives or nutritional supplements, Plant Foods Hum. Nutr. 65 (2010) 121129. CrossRefGoogle ScholarPubMed
Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J-L., Trotin, F., Grec, S., Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts, Food Chem. 115 (2009) 897903CrossRefGoogle Scholar