Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T19:23:50.928Z Has data issue: false hasContentIssue false

Astronomical duration of polarity Chron C31r (Lower Maastrichtian): cyclostratigraphy of ODP Site 762 (Indian Ocean) and the Contessa Highway section (Gubbio, Italy)

Published online by Cambridge University Press:  25 November 2011

DOROTHEE HUSSON
Affiliation:
Université Pierre et Marie Curie Paris 06, UMR 7193, ISTeP, Paris, France
BRUNO GALBRUN*
Affiliation:
Université Pierre et Marie Curie Paris 06, UMR 7193, ISTeP, Paris, France
NICOLAS THIBAULT
Affiliation:
Department for Geography and Geology, University of Copenhagen, Denmark
SILVIA GARDIN
Affiliation:
Université Pierre et Marie Curie Paris 06, UMR 7207, CRPP, Paris, France
EMILIA HURET
Affiliation:
Université Pierre et Marie Curie Paris 06, UMR 7193, ISTeP, Paris, France
RODOLFO COCCIONI
Affiliation:
Dipartimento di Scienze dell'Uomo, dell'Ambiente e della Natura dell'Università, Urbino, Italy
*
Author for correspondence: bruno.galbrun@upmc.fr

Abstract

The duration of polarity Chron C31r is estimated with a cyclostratigraphic approach. Two sites are investigated: ODP Site 762 (Indian Ocean) and the Contessa Highway section (Gubbio, Italy). Cyclostratigraphic analysis is performed on greyscale variations (Site 762) and magnetic susceptibility variations (Contessa section). Both sites reveal an astronomical control of the sedimentation, highlighted by the identification of all the orbital periodicities. Cyclostratigraphic signals are tuned on 405 ka eccentricity cycles extracted from the La04 astronomical solution. In both sites, cycle counting gives an estimate of the duration of polarity Chron C31r of about 2.09 ± 0.03 Ma.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, W., Arthur, M. A., Fischer, A. G., Lowrie, W., Napoleone, G., Premoli Silva, I. & Roggenthen, W. M. 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy: V. Type section for the Late Cretaceous-Paleocene geomagnetic reversal time scale. Geological Society of America Bulletin 88, 383–89.2.0.CO;2>CrossRefGoogle Scholar
Boulila, S., Galbrun, B., Hinnov, L. A. & Collin, P.-Y. 2008 a. High-resolution cyclostratigraphic analysis from magnetic susceptibility in a Lower Kimmeridgian (Upper Jurassic) marl-limestone succession (la Méouge, Vocontian Basin, France). Sedimentary Geology 203, 5463.CrossRefGoogle Scholar
Boulila, S., Hinnov, L. A., Huret, E., Collin, P.-Y., Galbrun, B., Fortwengler, D., Marchand, D. & Thierry, J. 2008 b. Astronomical calibration of the Early Oxfordian (Vocontian and Paris basins, France): consequences of revising the late Jurassic time scale. Earth and Planetary Science Letters 276, 4051.CrossRefGoogle Scholar
Bralower, T. J. & Siesser, W. G. 1992. Cretaceous calcareous nannofossil biostratigraphy of Sites 761, 762, and 763, Exmouth and Wombat Plateaus, northwest Australia. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 122 (eds von Rad, U., Haq, B. U. et al. ), pp. 529–56. College Station, Texas.Google Scholar
Cande, S. C. & Kent, D. V. 1992. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research 97, 13917–51.CrossRefGoogle Scholar
Cande, S. C. & Kent, D. V. 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 6093–95.CrossRefGoogle Scholar
Channell, J. E. T., Freeman, R., Heller, F. & Lowrie, W. 1982. Timing of diagenetic haematite growth in red pelagic limestones from Gubbio (Italy). Earth and Planetary Science Letters 58, 189201.CrossRefGoogle Scholar
Chauris, H., Lerousseau, J., Beaudoin, B., Propson, S. & Montanari, A. 1998. Inoceramid extinction in the Gubbio basin (northeastern Apennines of Italy) and relations with mid-Maastrichtian environmental changes. Palaeogeography, Palaeoclimatology, Palaeoecology 139, 177–93.CrossRefGoogle Scholar
Corbin, J.-C., Galbrun, B., Renard, M. & Emmanuel, L. 1995. La limite Campanien- Maastrichtien sur la marge Nord-Ouest australienne (Leg ODP 122): apports de la géochimie et de la magnétostratigraphie. Comptes Rendus de l'Académie des Sciences 321, 1017–23.Google Scholar
Cramer, B. S. 2001. Latest Palaeocene-earliest Eocene cyclostratigraphy: using core photographs for reconnaissance geophysical logging. Earth and Planetary Science Letters 186, 231–44CrossRefGoogle Scholar
Ellwood, B. B., Crick, R. E., Hassani, A. E., Benoist, S. L. & Young, R. H. 2000. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input versus carbonate productivity. Geology 28, 1135–38.2.0.CO;2>CrossRefGoogle Scholar
Galbrun, B. 1992. Magnetostratigraphy of Upper Cretaceous and lower Tertiary sediments, Sites 761 and 762, Exmouth Plateau, northwest Australia. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 122 (eds von Rad, U., Haq, B. U. et al. ), pp. 699716. College Station, Texas.Google Scholar
Galeotti, S., Angori, E., Coccioni, R., Ferrari, G., Galbrun, B., Monechi, S., Premoli Silva, I., Speijer, R. & Turi, B. 2000. Integrated stratigraphy across the Paleocene/Eocene Boundary in the Contessa Road section, Gubbio (central Italy). Bulletin de la Société Géologique de France 171, 355–65.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 589 pp.CrossRefGoogle Scholar
Haq, B. U., von Rad, U., O'Connell, S., et al. 1990. Proceedings of the Ocean Drilling Program, Initial Reports, vol. 122. College Station, Texas.CrossRefGoogle Scholar
Herbert, T. D. 1999. Toward a composite orbital chronology for the late Cretaceous and Early Paleocene GPTS. Philosophical Transactions of the Royal Society of London 357, 1891–905.CrossRefGoogle Scholar
Herbert, T. D. & D'Hondt, S. L. 1990. Precessional climate cyclicity in Late Cretaceous-Early Tertiary marine sediments: a high resolution chronometer of Cretaceous-Tertiary boundary events. Earth and Planetary Science Letters 99, 263–75.CrossRefGoogle Scholar
Herbert, T. D., Premoli Silva, I., Erba, E. & Fischer, A. 1995. Orbital chronology of Cretaceous-Paleocene marine sediments. In Geochronology, Time Scales, and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.), pp. 8194. SEPM Special Publication no. 54.Google Scholar
Hicks, J. F., Obradovich, J. D. & Tauxe, L. 1995. A new calibration point for the Late Cretaceous time scale: the 40Ar/39Ar isotopic age of the C33r/C33n geomagnetic reversal from the Judith River Formation (Upper Cretaceous), Elk Basin, Wyoming, USA. Journal of Geology 103, 243–56.CrossRefGoogle Scholar
Hicks, J. F., Obradovich, J. D. & Tauxe, L. 1999. Magnetostratigraphy, isotopic age calibration and intercontinental correlation of the Red Bird section of the Pierre Shale, Niobrara County, Wyoming, USA. Cretaceous Research 20, 127.CrossRefGoogle Scholar
Hinnov, L. A. 2000. New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences 28, 419–75.CrossRefGoogle Scholar
Hinnov, L. A. & Ogg, J. 2007. Cyclostratigraphy and the astronomical time scale. Stratigraphy 4, 239–51.CrossRefGoogle Scholar
Huang, Z., Boyd, R. & O'Connell, S. 1992. Upper Cretaceous cyclic sediments from Hole 762C, Exmouth Plateau, northwest Australia. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 122 (eds von Rad, U., Haq, B. U. et al. ), pp. 259–77. College Station, Texas.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. & Levrard, B. 2004. A long term numerical solution for the insolation quantities of the earth. Astronomy & Astrophysics 428, 261–85.CrossRefGoogle Scholar
Lourens, L., Hilgen, F., Shackleton, N. J., Laskar, J. & Wilson, D. 2004. The Neogene Period. In A Geologic Time Scale 2004 (eds Gradstein, F., Ogg, J. G. & Smith, A. G.), pp. 409–40. Cambridge: Cambridge University Press.Google Scholar
Lowrie, W. & Alvarez, W. 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy: III. Upper Cretaceous magnetic stratigraphy. Geological Society of America Bulletin 88, 374–7.2.0.CO;2>CrossRefGoogle Scholar
Lowrie, W., Alvarez, W., Napoleone, G., Perch-Nielsen, K., Premoli Silva, I. & Toumarkine, M. 1982. Paleogene magnetic stratigraphy in Umbrian pelagic carbonate rocks: the Contessa section, Gubbio. Geological Society of America Bulletin 93, 414–32.2.0.CO;2>CrossRefGoogle Scholar
Maurer, F., Hinnov, L. A. & Schlager, W. 2004. Statistical time-series analysis and sedimentological tuning of bedding rhythms in a Triassic basinal succession (Southern Alps, Italy). In Cyclostratigraphy: Approaches and Case Histories (eds D'Argenio, B., Fischer, A. G., Premoli Silva, I., Weissert, H. & Ferreri, V.), pp. 83–99. SEPM Special Publication no. 81.Google Scholar
Mayer, H. & Appel, E. 1999. Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the early Cretaceous Biancone formation of the Southern Alps, Italy. Cretaceous Research 20, 189214.CrossRefGoogle Scholar
Meyers, S. R., Sageman, B. B. & Hinnov, L. A. 2001. Integrated quantitative stratigraphy of the Cenomanian-Turonian bridge creek limestone member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research 71, 628–44.CrossRefGoogle Scholar
Monechi, S. & Thierstein, H. R. 1985. Late Cretaceous-Eocene nannofossil and magnetostratigraphic correlations near Gubbio, Italy. Marine Micropalaeontology 9, 419–40.CrossRefGoogle Scholar
Obradovich, J. 1993. A Cretaceous time scale. In Evolution of the Western Interior Basin (eds Caldwell, W. G. E. & Kauffman, E. G.), pp. 379–96. Geological Association of Canada, Special Paper no. 39.Google Scholar
Ogg, J. G., Agterberg, F. & Gradstein, F. M. 2004. The Cretaceous Period. In A Geologic Time Scale 2004 (eds Gradstein, F., Ogg, J. G. & Smith, A.G.), pp. 344–83. Cambridge: Cambridge University Press.Google Scholar
Ogg, J. G. & Smith, A. G. 2004. The geomagnetic polarity time scale. In A Geologic Time Scale 2004 (eds Gradstein, F., Ogg, J. G. & Smith, A. G.), pp. 6386. Cambridge: Cambridge University Press.Google Scholar
Paillard, D., Labeyrie, L. & Yiou, P. 1996. Macintosh program performs timeseries analysis. Eos 77, 379.CrossRefGoogle Scholar
Premoli Silva, I., Paggi, L. & Monechi, S. 1977. Cretaceous through Paleocene biostratigraphy of the pelagic sequence at Gubbio, Italy. Memori Societa Geologica Italiana 15, 2132.Google Scholar
Taner, M. T. 2000. Attributes Revisited. Houston, Texas: Rock Solid Images, Inc. http://www.rocksolidimages.com/pdf/attrib_revisited.htm.Google Scholar
Ten Kate, W. G. & Sprenger, A. 1993. Orbital cyclicities above and below the Cretaceous/Paleogene boundary at Zumaya (N Spain), Agost and Relleu (SE Spain). Sedimentary Geology 87, 69101.CrossRefGoogle Scholar
Thibault, N. & Gardin, S. 2010. The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 291 239–52.CrossRefGoogle Scholar
Thibault, N., Gardin, S. & Galbrun, B. 2010. Latitudinal migration of calcareous nannofossil Micula murus in the Maastrichtian: implications for global climate change. Geology 38, 203–6.CrossRefGoogle Scholar
Thomson, D. J. 1982. Spectrum estimation and harmonic analysis. Institute of Electrical and Electronics Engineers Proceedings 70, 1055–96.CrossRefGoogle Scholar
Voigt, S. & Schönfeld, J. 2010. Cyclostratigraphy of the reference section for the Cretaceous white chalk of northern Germany, Lägerdorf-Kronsmoor: a late Campanian-early Maastrichtian orbital time scale. Palaeogeography, Palaeoclimatology, Palaeoecology 287, 6780.CrossRefGoogle Scholar
Weedon, G., Jenkyns, H., Coe, A. L. & Hesselbo, S. 1999. Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society of London 357, 1787–813CrossRefGoogle Scholar
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J. & Evans, H. F. 2008. Astronomical calibration of the Paleocene time. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 377403.CrossRefGoogle Scholar
Wonders, A. A. H. 1992. Cretaceous planktonic foraminiferal biostratigraphy, Leg 122, Exmouth Plateau, Australia. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 122 (eds von Rad, U., Haq, B. U. et al. ), pp. 587–99. College Station, Texas.Google Scholar
Supplementary material: File

Husson Supplementary Figures

Husson Supplementary Figures

Download Husson Supplementary Figures(File)
File 3.6 MB