Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T14:56:50.721Z Has data issue: false hasContentIssue false

A new genus and species of Ptyctodont (Placodermi) from the Late Devonian Gneudna Formation, Western Australia, and an analysis of Ptyctodont phylogeny

Published online by Cambridge University Press:  15 July 2009

KATE TRINAJSTIC*
Affiliation:
WA Organic and Isotope Geochemistry Centre, Department of Applied Chemistry, Curtin University of Technology, Bentley, Western Australia 6845, Australia
JOHN A. LONG
Affiliation:
Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia Research School of Earth Sciences, The Australian National University, Camberra 0200, Australia
*
*Author for correspondence: K.Trinajstic@curtin.edu.au

Abstract

An almost complete but predominantly disarticulated ptyctodont fish, Kimbryanodus williamburyensis n. gen., n.sp. from the Late Devonian Gneudna Formation, is described. The fossils occur as three-dimensionally preserved isolated plates, and this has allowed the reconstruction of the fish. A taxonomic revision of the ptyctodonts was undertaken based on recently described Australian taxa and new reconstructions of Australian, American and European specimens. The phylogenetic analysis supports a threefold division of the ptyctodonts, with Rhamphodopsis being the most basal taxon and the other ptyctodonts divided into those possessing a median dorsal spine, spinal plate and simple V-shaped overlap of the anterior lateral and anterior dorsolateral plates and those taxa which do not.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1844. Monographie des poissons fossils du vieux grès rouge ou système Dévonien (Old Red Sandstone) des îles britanniques et de Russie. Neuchatel, 171 pp.Google Scholar
Burrow, C. J. 2003. Comment on “Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates”. Science 300, 1661b.CrossRefGoogle Scholar
Burrow, C. J. & Turner, S. 1999. A review of placoderm scales, and their significance in placoderm phylogeny. Journal of Vertebrate Paleontology 19, 204–19.CrossRefGoogle Scholar
Carr, R. 1995. Placoderm diversity and evolution. Bulletin du Muséum national d'Histoire naturelle, serie C Paris 14, 313.Google Scholar
Denison, R. H. 1978. Placodermi. In Handbook of Paleoichthyology, pt 2 (ed. Schultze, H.-P.). Stuttgart, New York: Gustav Fischer Verlag, 128 pp.Google Scholar
Denison, R. H. 1985. A new ptyctodontid placoderm, Ptyctodopsis, from the Middle Devonian of Iowa. Journal of Paleontology 59, 511–22.Google Scholar
Forey, P. L. & Gardiner, B. G. 1986. Observations on Ctenurella (Ptyctodontida) and the classification of placoderm fishes. Zoological Journal of the Linnean Society 86, 4374.CrossRefGoogle Scholar
Goujet, D. 1984. Placoderm interrelationships: a new interpretation, with a short review of placoderm classification. Proceedings of the Linnean Society of New South Wales 107, 211–41.Google Scholar
Goujet, D. 2001. Placoderms and basal gnathostome apomorphies. In Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny and Development (ed. Ahlberg, P. E.), pp. 209–22. Systematics Association. London: Taylor and Francis.Google Scholar
Goujet, D. & Young, G. C. 1995. Interrelationships of placoderms revisited. Geobios 19, 8996.CrossRefGoogle Scholar
Goujet, D. & Young, G. C. 2004. Placoderm anatomy and phylogeny: new insights. In Recent Advances in the Origin an Early Radiation of Vertebrates (eds Arratia, G., Wilson, M. V. H. & Cloutier, R.), pp. 109–26. München: Verlag Dr Friedrich Pfeil.Google Scholar
Gross, W. 1932. Die Arthrodira Wildungens. Geologische und paläontologische Abhandlungen, Neue Folge 19, 161.Google Scholar
Gross, W. 1937. Die Wirbeltiere des rheinischen Devons. Abhandlungen Preuss Geologische Landesanstält 176, 583.Google Scholar
Hocking, R. 1990. Carnarvon Basin, Geology and Mineral Resources of Western Australia. Geological Survey of Western Australia Memoir 3, 457–95.Google Scholar
Hocking, R., Moors, H. T. & Van De Graaff, J. E. 1987. Geology of the Carnarvon Basin, Western Australia. Geological Survey of Western Australia Bulletin 133, 1289.Google Scholar
Johnson, H.-M. & Elliott, D. 1996. A new ptyctodont (Placodermi) from the Upper Devonian Martin Formation of northern Arizona, and an analysis of ptyctodont phylogeny. Journal of Paleontology 70, 9971003.CrossRefGoogle Scholar
Lelièvre, H. 1984. Antineosteus lehmani n. gen., n. sp., nouveau Brachythoraci du Dévonien du Maroc présaharien Remarques sur la paléobiogéographie des homostéides de l'Emsien. Annals Paléontologie (Vertebres) 64 (2), 115–58.Google Scholar
Liu, Y.-H. 1991. On a new petalichthyid Eurycaraspis incilisi gen. et sp. nov. (Placodermi, Pisces) from the middle Devonian of Zhanyi, Yunnan. In Early Vertebrates and Related Problems of Evolutionary Biology (eds Chang, M.-M., Liu, Y.-H. & Zhang, G.-R.), pp. 139–77. Beijing, China: Science Press.Google Scholar
Long, J. A. 1988. Campbellodus sp. (Placodermi: Ptyctodontida) from the Upper Devonian Napier range, Canning Basin. Records of the Western Australian Museum 14, 141–4. Perth.Google Scholar
Long, J. A. 1997. Ptyctodontid fishes (Vertebrata, Placodermi) from the Late Devonian Gogo Formation, Western Australia, with a revision of the European genus Ctenurella Ørvig, 1960. Geodiversitas 19, 515–55.Google Scholar
Long, J. A. & Trinajstic, K. 2000. An overview of the Devonian microvertebrate faunas of Western Australia. In Palaeozoic vertebrate biochronology and global marine/non-marine correlation – Final report of IGCP 328 (1991–1996) (eds Blieck, A. & Turner, S.), pp. 471–86. Courier Forschungsinstitut Senckenberg 233.Google Scholar
Long, J. A., Trinajstic, K., Young, C. & Senden, T. 2008. Live birth in the Devonian. Nature 453, 650–3.CrossRefGoogle ScholarPubMed
M'Coy, F. 1848. On some new fossil fish of the Carboniferous period. Annals and Magazine of Natural History 2, 110.CrossRefGoogle Scholar
Miles, R. S. 1967. Observations on the ptyctodont fish, Rhamphodopsis Watson. Zoological Journal of the Linnean Society 47, 99120.CrossRefGoogle Scholar
Miles, R. S. & Young, G. C. 1977. Placoderm interrelationships reconsidered in the light of new ptyctodontids from Gogo, Western Australia. Linnean Society of London, Symposium Series 4, 123–98.Google Scholar
Newberry, J. S. 1873. Descriptions of fossil fishes. Geological Survey Report 1, pt 2 (Paleontology), 243–355.Google Scholar
Ørvig, T. 1960. New finds of acanthodians, arthrodires, crossopterygians, ganoids and dipnoans in the upper Middle Devonian Calcareous Flags (Oberer Plattenkalk) of the bergisch-Paffrath Trough (Part 1). Paläontologische Zeitschrift 34, 295335.CrossRefGoogle Scholar
Ørvig, T. 1962. Y a-t-il une relation directe entre les Arthrodires ptyctodontides et les Holocéphales? In Problèmes actuels de paléontologie: évolution des Vertébrés (ed. Lehman, J. P.), pp. 4961. Colloques internationaux du Centre National de la Recherche scientifique v. 104. Paris.Google Scholar
Ørvig, T. 1975. Description, with special reference to the dermal skeleton, of a new radontinid arthrodire from the Gedinnian of Arctic Canada. In Problèmes actuels de paléontologie: évolution des Vertébrés (ed. Lehman, J. P.), pp. 4171. Colloques internationaux du Centre National de la Recherche scientifique v. 218. Paris.Google Scholar
Patterson, C. 1965. The phylogeny of the chimaeroids. Philosophical Transactions of the Royal Society of London B249, 101219.Google Scholar
Patterson, C. 1992. Interpretation of the toothplates of chimaeroid fishes. Zoological Journal of the Linnean Society London 106, 3361.CrossRefGoogle Scholar
Smith, M. & Johanson, Z. 2003. Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates. Science 299, 1235–6.CrossRefGoogle ScholarPubMed
Stahl, B. 1999. Mesozoic holocephalians. In Systematics and Fossil Record (eds Arratia, G. & Schultze, H.-P.), pp. 919. München: Verlag Dr. Friedrich Pfeil.Google Scholar
Swofford, D. L. 1989. Phylogenetic anaysis using parsimony (PAUP). Version 3.0. Champaign, Illinois: Illinois Natural History Survey.Google Scholar
Trinajstic, K. 2001. A description of additional variation seen in the scale morphology of the Frasnian thelodont Australolepis seddoni Turner and Dring 1981. Records of the Western Australian Museum 20, 237–46.Google Scholar
Turner, S. 1997. Sequence of Devonian thelodont scale assemblages in East Gondwana. Geological Society of America Special Paper 321, 295315.Google Scholar
Turner, S. & Dring, R. 1981. Late Devonian thelodonts (Agnatha) from the Gneudna Formation, Carnarvon Basin, Western Australia. Alcheringa 5, 3948.CrossRefGoogle Scholar
Watson, D. M. S. 1938. On Rhamphodopsis, a ptyctodont from the Middle Old Red sandstone of Scotland. Transactions of the Royal Society of Edinburgh 59, 397410.CrossRefGoogle Scholar
Woodward, A. S. 1891. Catalogue of the fossil fishes in the British Museum (Natural History). Volume 2. London: Trustees of the British Museum (Natural History), 567 pp.Google Scholar
Young, G. C. 1986. The relationships of placoderm fishes. Zoological Journal of the Linnean Society 88, 157.CrossRefGoogle Scholar
Young, G. C. 2003. Did placoderm fish have teeth? Journal of Vertebrate Paleontology 23, 988–91.CrossRefGoogle Scholar
Young, G. C., Lelièvre, H. & Goujet, D. 2001. Primitive jaw structure in an articulated brachythoracid arthrodire (placoderm fish; Early Devonian) from southeastern Australia. Journal of Vertebrate Paleontology 21, 670–8.CrossRefGoogle Scholar
Zhu, M. & Schultze, H.-P. 2001. Interrelationships of basal osteichthyans. In Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny and Development (ed. Ahlberg, P. E.), pp. 289314. London: Systematic Association.Google Scholar
Zhu, M., Yu, X. & Janvier, P. 1999. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397, 607–10.CrossRefGoogle Scholar