Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T11:04:56.442Z Has data issue: false hasContentIssue false

Provenance of the early Palaeozoic volcano-sedimentary successions from eastern part of the Central Sudetes: implications for the tectonic evolution of the NE Bohemian Massif

Published online by Cambridge University Press:  02 October 2023

Jacek Szczepański*
Affiliation:
Faculty of Earth Science and Environmental Management, Institute of Geological Sciences, University of Wrocław, Wrocław, Poland
Gabriela Kaszuba
Affiliation:
Faculty of Earth Science and Environmental Management, Institute of Geological Sciences, University of Wrocław, Wrocław, Poland Polish Academy of Sciences, Research Centre in Cracow, Institute of Geological Sciences, Kraków, Poland
Robert Anczkiewicz
Affiliation:
Polish Academy of Sciences, Research Centre in Cracow, Institute of Geological Sciences, Kraków, Poland
Sławomir Ilnicki
Affiliation:
Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, Warsaw, Poland
*
Corresponding author: Jacek Szczepański; Email: jacek.szczepanski@uwr.edu.pl

Abstract

The Kamieniec Metamorphic Belt (KMB) and the Doboszowice Metamorphic Complex (DMC) expose a fragment of the pre-Variscan volcano-sedimentary cover preserved in the Fore-Sudetic Block in the NE part of the Bohemian Massif. We present the age of detrital and magmatic zircon grains and the bulk rock chemical composition of rock samples from the KMB and the DMC to better understand the evolution of the early Palaeozoic Gondwana margin. The zircon age spectra were acquired by U–Pb LA–ICP–MS dating and represent two groups that differ by maximum depositional age (MDA). The paragneiss from the DMC displays the MDA at 456 Ma, whereas the mica shist from the KMB displays the MDA at 529 Ma. Older age peaks in both groups of samples are represented by the Neoproterozoic and less frequent the Paleoproterozoic and Archean. The data presented indicate that the rock successions were sourced from the Cadomian orogen and deposited in the basins that developed on the Gondwana margin. Our results support the suggestion that the crystalline basement in the eastern part of the Fore-Sudetic Block has an affinity to the Trans-Saharan Belt or West African Craton and was part of a Gondwana shelf. The final stage of evolution of the studied successions was related to the Variscan thermal overprint. Based on presented data, we support the idea that the suture separating the Brunovistulian domain from the rest of the Gondwana-derived terranes is not related to the closure of the Rheic Ocean and represents a local feature.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abati, J, Aghzer, AM, Gerdes, A and Ennih, N (2010) Detrital zircon ages of Neoproterozoic sequences of the Moroccan Anti-Atlas belt. Precambrian Research 181, 115–28.CrossRefGoogle Scholar
Abdallah, N, Liégeois, J-P, De Waele, B, Fezaa, N and Ouabadi, A (2007) The Temaguessine Fe-cordierite orbicular granite (Central Hoggar, Algeria): U–Pb SHRIMP age, petrology, origin and geodynamical consequences for the late Pan-African magmatism of the Tuareg shield. Journal of African Earth Sciences 49, 153–78.CrossRefGoogle Scholar
Arenas, R, Martínez Catalán, JR, Sánchez Martínez, S, Fernández-Suárez, J, Andonaegui, P, Pearce, JA and Corfu, F (2007) The Vila de Cruces Ophiolite: a Remnant of the early Rheic Ocean in the Variscan Suture of Galicia (Northwest Iberian Massif). The Journal of Geology 115, 129–48.CrossRefGoogle Scholar
Awdankiewicz, H (2008) The petrology and geochemistryof the metabasites of the Niedzwiedz Massifin the Fore-Sudetic Block. Prace Państwowego Instytutu Geologicznego 189, 556.Google Scholar
Bendaoud, A, Ouzegane, K, Godard, G, Liégeois, J-P, Kienast, J-R, Bruguier, O and Drareni, A (2008) Geochronology and metamorphic P – T – X evolution of the Eburnean granulite-facies metapelites of Tidjenouine (Central Hoggar, Algeria): witness of the LATEA metacratonic evolution. Geological Society, London, Special Publications 297, 111–46.CrossRefGoogle Scholar
Bhatia, MR (1983) Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–27.CrossRefGoogle Scholar
Bhatia, MR and Crook, KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.CrossRefGoogle Scholar
Boris, R, Domeier, M and Jakob, J (2021) On the origins of the Iapetus Ocean. Earth-Science Reviews 221, 103791.Google Scholar
Bosch, D, Bruguier, O, Caby, R, Buscail, F and Hammor, D (2016) Orogenic development of the Adrar des Iforas (Tuareg Shield, NE Mali): new geochemical and geochronological data and geodynamic implications. Journal of Geodynamics 96, 104–30.CrossRefGoogle Scholar
Chopin, F, Schulmann, K, Skrzypek, E, Lehmann, J, Dujardin, JR, Martelat, JE, Lexa, O, Corsini, M, Edel, JB, Štípská, P and Pitra, P (2012) Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt). Tectonics 31, TC1013.CrossRefGoogle Scholar
Collett, S, Schulmann, K, Deiller, P, Štípská, P, Peřestý, V, Ulrich, M, Jiang, Y, de Hoÿm de Marien, L and Míková, J (2022) Reconstruction of the mid-Devonian HP-HT metamorphic event in the Bohemian Massif (European Variscan belt). Geoscience Frontiers 13, 101374.CrossRefGoogle Scholar
Collett, S, Schulmann, K, Štípská, P and Míková, J (2020) Chronological and geochemical constraints on the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Research 79, 2748.CrossRefGoogle Scholar
Collett, S, Štípská, P, Schulmann, K, Míková, J and Kröner, A (2021) Tectonic significance of the Variscan suture between Brunovistulia and the Bohemian Massif. Journal of the Geological Society 178. doi: 10.1144/jgs2020-176jgs2020176.CrossRefGoogle Scholar
Cullers, RL (1994) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta 58, 4955–72.CrossRefGoogle Scholar
Cullers, RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181203.CrossRefGoogle Scholar
Cullers, RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology 191, 305–27.CrossRefGoogle Scholar
Dickinson, WR and Gehrels, GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters 288, 115–25.CrossRefGoogle Scholar
Díez Fernández, R, Castiñeiras, P and Gómez Barreiro, J (2012) Age constraints on lower Paleozoic convection system: magmatic events in the NW Iberian Gondwana margin. Gondwana Research 21, 1066–79.CrossRefGoogle Scholar
Domeier, M (2016) A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Research 36, 275–95.CrossRefGoogle Scholar
Dörr, W, Zulauf, G, Fiala, J, Franke, W and Vejnar, Z (2002) Neoproterozoic to early Cambrian history of an active plate margin in the Teplá–Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352, 6585.CrossRefGoogle Scholar
Drost, K, Gerdes, A, Jeffries, T, Linnemann, U and Storey, C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): Evidence from U–Pb detrital zircon ages. Gondwana Research 19, 213–31.CrossRefGoogle Scholar
Dziedzicowa, H (1966) Seria łupków krystalicznych na wschód od strefy Niemczy w świetle nowych badań. The schists series east of the Niemcza Zone in the light of new investigations, (in Polish, English summary). Z geologii Ziem Zachod-nich, Scientific Session of the 20th Anniversary of Polish Research 1945-1965, Wroclaw. 101–18.Google Scholar
Elicki, O (1997) Biostratigraphic data of the German Cambrian—present state of knowledge. Freiberger Forschungshefte C466, 155–65.Google Scholar
Fernández-Suárez, J, Alonso, GG, Cox, R and Jenner, GA (2002) Assembly of the Armorica Microplate: a strike-slip Terrane delivery? Evidence from U-Pb ages of detrital zircons. The Journal of Geology 110, 619–26.CrossRefGoogle Scholar
Floyd, PA, Leveridge, BE, Franke, W, Shail, R and Doerr, W (1990) Provenance and depositional environment of Rhenohercynian synorogenic greywackes from the Giessen Nappe, Germany. Geologische Rundschau 79, 611–26.CrossRefGoogle Scholar
Floyd, PA, Winchester, JA and Park, RG (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments of the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research 45, 203–14.CrossRefGoogle Scholar
Franke, W (1989) Tectonostratigraphic units in the Variscan Belt of Central Europe. Terranes in the Circum-Atlantic Paleozoic orogens 230, 6790.CrossRefGoogle Scholar
Friedl, G, Finger, F, Paquette, J-L, von Quadt, A, McNaughton, NJ and Fletcher, IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. The Avalonian-Cadomian Belt and related peri-Gondwanan terranes 93, 802–23.Google Scholar
Gaucher, C, Finney, S, Poire, D, Valencia, V, Grove, M, Blanco, G, Pamoukaghlian, K and Peral, L (2008) Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: insights into the geological evolution of the Río de la Plata Craton. Precambrian Research 167, 150–70.CrossRefGoogle Scholar
Geraldes, MC, Nogueira, C, Vargas-Mattos, G, Matos, R, Teixeira, W, Valencia, V and Ruiz, J (2014) U–Pb detrital zircon ages from the Aguapeí Group (Brazil): implications for the geological evolution of the SW border of the Amazonian Craton. Precambrian Research 244, 306–16.CrossRefGoogle Scholar
Gorton, MP and Schandl, ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist 38, 1065–73.CrossRefGoogle Scholar
Hajná, J, Žák, J and Dörr, W (2017) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Research 42, 6383.CrossRefGoogle Scholar
Hajná, J, Žák, J, Dörr, W, Kachlík, V and Sláma, J (2018) New constraints from detrital zircon ages on prolonged, multiphase transition from the Cadomian accretionary orogen to a passive margin of Gondwana. Precambrian Research 317, 159–78.CrossRefGoogle Scholar
Hasterok, D, Gard, M and Webb, J (2018) On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geoscience Frontiers 9, 1777–94.CrossRefGoogle Scholar
Hastie, AR, Kerr, AC, Pearce, JA and Mitchell, SF (2007) Classification of altered Volcanic Island Arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of Petrology 48, 2341–57.CrossRefGoogle Scholar
Henry, B, Liégeois, JP, Nouar, O, Derder, MEM, Bayou, B, Bruguier, O, Ouabadi, A, Belhai, D, Amenna, M, Hemmi, A and Ayache, M (2009) Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg shield, Algeria: an AMS and U–Pb zircon age study. Tectonophysics 474, 417–34.CrossRefGoogle Scholar
Herron, MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research 58, 820–9.Google Scholar
Hladil, J, Patocka, F, Kachlik, V, Melichar, R and Hubacik, M (2003) Metamorphosed carbonates of Krkonose mountains and Paleozoic evolution of Sudetic terranes (NE Bohemia, Czech Republic). Geologica Carpathica 54, 281–97.Google Scholar
Jackson, SE, Pearson, NJ, Griffin, WL and Belousova, EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Jastrzębski, M, Budzyń, B and Stawikowski, W (2017) Cambro-Ordovician vs Devono-Carboniferous geodynamic evolution of the Bohemian Massif: evidence from P–T–t studies in the Orlica–Śnieżnik Dome, SW Poland. Geological Magazine 156, 447–70.CrossRefGoogle Scholar
Jastrzębski, M, Żelaźniewcz, A, Sláma, J, Machowiak, K, Śliwiński, M, Jaźwa, A and Kocjan, I (2021) Provenance of Precambrian basement of the Brunovistulian Terrane: new data from its Silesian part (Czech Republic, Poland), central Europe, and implications for Gondwana break-up. Precambrian Research 355, 106108.CrossRefGoogle Scholar
Jastrzębski, M, Żelaźniewicz, A, Budzyń, B, Sláma, J and Konečny, P (2020) Age constraints on the Pre-Variscan and Variscan thermal events in the Kamieniec Ząbkowicki Metamorphic belt (the Fore-Sudetic Block, SW Poland). Annales Societatis Geologorum Poloniae 90, 2749.Google Scholar
Jastrzębski, M, Żelaźniewicz, A, Majka, J, Murtezi, M, Bazarnik, J and Kapitonov, I (2013) Constraints on the Devonian–Carboniferous closure of the Rheic Ocean from a multi-method geochronology study of the Staré Město Belt in the Sudetes (Poland and the Czech Republic). Lithos 170–171, 5472.CrossRefGoogle Scholar
Jastrzębski, M, Żelaźniewicz, A, Murtezi, M, Larionov, AN and Sergeev, S (2015) The Moldanubian Thrust Zone — a terrane boundary in the Central European Variscides refined based on lithostratigraphy and U–Pb zircon geochronology. Lithos 220–223, 116–32.CrossRefGoogle Scholar
Jastrzębski, M, Żelaźniewicz, A, Nowak, I, Murtezi, M and Larionov, AN (2010) Protolith age and provenance of metasedimentary rocks in Variscan allochthon units: U/Pb SHRIMP zircon data from the Orlica-Śnieżnik Dome, West Sudetes. Geological Magazine 147, 416–33.CrossRefGoogle Scholar
Jastrzębski, M, Żelaźniewicz, A, Stawikowski, W, Budzyń, B, Krzemińska, E, Machowiak, K, Madej, S, Białek, D, Sláma, J, Czupyt, Z and Jaźwa, A (2023) The eastern part of the Saxothuringian Terrane characterized by zircon and monazite data from the Doboszowice Metamorphic Complex in the Sudetes (SW Poland). Annales Societatis Geologorum Poloniae 93 (in print).Google Scholar
Jung, S, Masberg, P, Mihm, D and Hoernes, S (2009) Partial melting of diverse crustal sources — constraints from Sr–Nd–O isotope compositions of quartz diorite–granodiorite–leucogranite associations (Kaoko Belt, Namibia). Lithos 111, 236–51.CrossRefGoogle Scholar
Kalvoda, J, Babek, O, Fatka, O, Leichmann, J, Melichar, R, Nehyba, S and Spacek, P (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences 97, 497518.CrossRefGoogle Scholar
Kirchner, F and Albert, R (2020) New detrital zircon age data reveal the location of the Rheic suture in the Mid-German Crystalline Zone (Spessart and Odenwald Crystalline Complexes). International Journal of Earth Sciences 109, 2287–305.CrossRefGoogle Scholar
Koglin, N, Zeh, A, Franz, G, Schüssler, U, Glodny, J, Gerdes, A and Brätz, H (2018) From Cadomian magmatic arc to Rheic ocean closure: the geochronological-geochemical record of nappe protoliths of the Münchberg Massif, NE Bavaria (Germany). Gondwana Research 55, 135–52.CrossRefGoogle Scholar
Košler, J, Konopásek, J, Sláma, J and Vrána, S (2014) U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. Journal of the Geological Society 171, 8395.CrossRefGoogle Scholar
Kristoffersen, M, Andersen, T and Andresen, A (2014) U–Pb age and Lu–Hf signatures of detrital zircon from Palaeozoic sandstones in the Oslo Rift, Norway. Geological Magazine 151, 816–29.CrossRefGoogle Scholar
Kröner, A, Jaeckel, P and Opletal, M (1994) Pb-Pb and U-Pb zircon ages for orthogneisses from eastern Bohemia; further evidence for a major Cambro-Ordovician magmatic event. Evolution of Variscan (Hercynian) and Comparable Palaeozoic Orogenic Belts; Joint Meeting of Geologische Vereinigung e.V. and Ceska Geologicka Spolecnost 39, 61.Google Scholar
Kuznetsov, NB, Meert, JG and Romanyuk, TV (2014) Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic–Middle Cambrian(?) Asha Group and early Devonian Takaty Formation, the Southwestern Urals: a test of an Australia-Baltica connection within Rodinia. Precambrian Research 244, 288305.CrossRefGoogle Scholar
Lange, U, Bröcker, M, Armstrong, R, Żelaźniewicz, A, Trapp, E and Mezger, K (2005) The orthogneisses of the Orlica-Śnieżnik complex (West Sudetes, Poland): geochemical characteristics, the importance of pre-Variscan migmatization and constraints on the cooling history. Journal of the Geological Society 162, 973–84.CrossRefGoogle Scholar
Linnemann, U (2007) Ediacaran rocks from the Cadomian basement of the Saxo-Thuringian Zone (NE Bohemian Massif, Germany); age constraints, geotectonic setting and basin development. The Rise and Fall of the Ediacaran Biota 286, 3551.Google Scholar
Linnemann, U, Gehmlich, M, Tichomirowa, M, Buschmann, B, Nasdala, L, Jonas, P, Luetzner, H and Bombach, K (2000) From Cadomian subduction to early Paleozoic rifting; the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Orogenic Processes; Quantification and Modelling in the Variscan Belt 179, 131–53.Google Scholar
Linnemann, U, Gerdes, A, Drost, K and Buschmann, B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). Special Paper 423: The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision 423, 6196.Google Scholar
Linnemann, U and Heuse, T (2001) The Ordovician of the Schwarzburg Anticline: geotectonic setting, biostratigraphy and sequence stratigraphy (Saxo-Thuringian Terrane, Germany). Zeitschrift der Deutschen Geologischen Gesellschaft 151, 471–91.CrossRefGoogle Scholar
Linnemann, U, McNaughton, NJ, Romer, RL, Gehmlich, M, Drost, K and Tonk, C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif); Did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. The Avalonian-Cadomian Belt and related peri-Gondwanan terranes 93, 683705.Google Scholar
Linnemann, U, Pereira, F, Jeffries, TE, Drost, K and Gerdes, A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean; the diacrony of geotectonic processes constrained by LA-ICP-MS U/Pb zircon dating (Ossa-Morena and Saxo-Thuringian zones, Iberian and Bohemian massifs). The Foundations and Birth of the Rheic Ocean; Avalonian-Cadomian Orogenic Processes and Early Paleozoic Rifting at the Northern Gondwana Margin 461, 2143.Google Scholar
Linnemann, U, Pidal, AP, Hofmann, M, Drost, K, Quesada, C, Gerdes, A, Marko, L, Gärtner, A, Zieger, J, Ulrich, J, Krause, R, Vickers-Rich, P and Horak, J (2018) A ∼565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. International Journal of Earth Sciences 107, 885911.CrossRefGoogle Scholar
Ludwig, KR (2008) Isoplot/Ex 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley: Geochronological Center.Google Scholar
Maniar, PD and Piccoli, PM (1989) Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.2.3.CO;2>CrossRefGoogle Scholar
Martínez Catalán, JR, Collett, S, Schulmann, K, Aleksandrowski, P and Mazur, S (2020) Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif, European Variscan belt. International Journal of Earth Sciences 109, 1105–31.CrossRefGoogle Scholar
Martínez Catalán, JR, Schulmann, K and Ghienne, J-F (2021) The Mid-Variscan Allochthon: keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth-Science Reviews 220, 103700.CrossRefGoogle Scholar
Mazur, S, Aleksandrowski, P, Gągała, Ł, Krzywiec, P, Żaba, J, Gaidzik, K and Sikora, R (2020) Late Palaeozoic strike-slip tectonics versus oroclinal bending at the SW outskirts of Baltica: case of the Variscan belt’s eastern end in Poland. International Journal of Earth Sciences 109, 1133–60.CrossRefGoogle Scholar
Mazur, S, Aleksandrowski, P, Kryza, R and Oberc-Dziedzic, T (2006) The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Mazur, S, Kröner, A, Szczepański, J, Turniak, K, Hanžl, P, Melichar, R, Rodionov, NV, Paderin, I and Sergeev, SA (2010) Single zircon U/Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geological Magazine 147, 508–26.CrossRefGoogle Scholar
Mazur, S, Szczepański, J, Turniak, K and McNaughton, NJ (2012) Location of the Rheic suture in the eastern Bohemian Massif: evidence from detrital zircon data. Terra Nova 24, 199206.CrossRefGoogle Scholar
Mazur, S, Turniak, K, Szczepański, J and McNaughton, NJ (2015) Vestiges of Saxothuringian crust in the Central Sudetes, Bohemian Massif: zircon evidence of a recycled subducted slab provenance. Gondwana Research 27, 825–39.CrossRefGoogle Scholar
McLennan, SM (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21, 169200.Google Scholar
McLennan, SM, Hemming, S, McDaniel, DK and Hanson, GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Processes Controlling the Composition of Clastic Sediments 284, 2140.CrossRefGoogle Scholar
Meinhold, G, Morton, AC, Fanning, CM, Frei, D, Howard, JP, Phillips, RJ, Strogen, D and Whitham, AG (2011) Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth and Planetary Science Letters 312, 164–75.CrossRefGoogle Scholar
Merdith, AS, Williams, SE, Collins, AS, Tetley, MG, Mulder, JA, Blades, ML, Young, A, Armistead, SE, Cannon, J, Zahirovic, S and Müller, RD (2021) Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Science Reviews 214, 103477.CrossRefGoogle Scholar
Mingram, B, Kröner, A, Hegner, E and Krentz, O (2004) Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. International Journal of Earth Sciences 93, 706–27.CrossRefGoogle Scholar
Moyen, J-F, Laurent, O, Chelle-Michou, C, Couzinié, S, Vanderhaeghe, O, Zeh, A, Villaros, A and Gardien, V (2017) Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 277, 154–77.CrossRefGoogle Scholar
Nance, RD, Gutiérrez-Alonso, G, Keppie, JD, Linnemann, U, Murphy, JB, Quesada, C, Strachan, RA and Woodcock, NH (2010) Evolution of the Rheic Ocean. Gondwana Research 17, 194222.CrossRefGoogle Scholar
Nance, RD, Gutiérrez-Alonso, G, Keppie, JD, Linnemann, U, Murphy, JB, Quesada, C, Strachan, RA and Woodcock, NH (2012) A brief history of the Rheic Ocean. Geoscience Frontiers 3, 125–35.CrossRefGoogle Scholar
Nance, RD and Linnemann, U (2008) The Rheic Ocean: origin, evolution, and significance. GSA Today 18, 4.CrossRefGoogle Scholar
Nance, RD, Murphy, JB, Strachan, RA, Keppie, JD, Gutierrez Alonso, G, Fernandez Suarez, J, Quesada, C, Linnemann, U, d’Lemos, R and Pisarevsky, SA (2008) Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes; Amazonian v. West African connections. The Boundaries of the West African Craton 297, 345–83.CrossRefGoogle Scholar
Oberc-Dziedzic, T, Kryza, R, Madej, S and Pin, C (2018) The Saxothuringian Terrane affinity of the metamorphic Stachów Complex (Strzelin Massif, Fore-Sudetic Block, Poland) inferred from zircon ages. Geological Quarterly 62, 237256.CrossRefGoogle Scholar
Oberc-Dziedzic, T, Kryza, R, Pin, Ch, Mochnacka, K and Larionov, A (2009) The Orthogneiss and Schist complex of the Karkonosze–Izera Mas sif (Sudetes, SW Poland): U-Pb SHRIMP zircon ages, Nd-iso tope systematics and protoliths. Geologia Sudetica 41, 324.Google Scholar
Oberc-Dziedzic, T, Pin, C and Kryza, R (2005) Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. International Journal of Earth Sciences 94, 354–68.CrossRefGoogle Scholar
Oriolo, S, Schulz, B, Geuna, S, González, PD, Otamendi, JE, Sláma, J, Druguet, E and Siegesmund, S (2021) Early Paleozoic accretionary orogens along the Western Gondwana margin. Geoscience Frontiers 12, 109–30.CrossRefGoogle Scholar
Pankhurst, RJ, Hervé, F, Fanning, CM, Calderón, M, Niemeyer, H, Griem-Klee, S and Soto, F (2016) The pre-Mesozoic rocks of northern Chile: U–Pb ages, and Hf and O isotopes. Earth-Science Reviews 152, 88105.CrossRefGoogle Scholar
Patiño Douce, AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications 168, 5575.CrossRefGoogle Scholar
Paton, C, Hellstrom, J, Paul, B, Woodhead, J and Hergt, J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508.CrossRefGoogle Scholar
Paton, C, Woodhead, JD, Hellstrom, JC, Hergt, JM, Greig, A and Maas, R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction: improved laser ablation U-Pb geochronology. Geochemistry, Geophysics, Geosystems 11, n/a–n/a.CrossRefGoogle Scholar
Pearce, JA, Harris, NBW and Tindle, AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pearce, JA and Peate, DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251–85.CrossRefGoogle Scholar
Pérez-Cáceres, I, Martínez Poyatos, D, Simancas, JF and Azor, A (2015) The elusive nature of the Rheic Ocean suture in SW Iberia. Tectonics 34, 2429–50.CrossRefGoogle Scholar
Pettijohn, FJ, Potter, PE and Siever, R (1987) Sand and Sandstone. New York, NY: Springer New York.CrossRefGoogle Scholar
Peucat, JJ, Drareni, A, Latouche, L, Deloule, E and Vidal, P (2003) U–Pb zircon (TIMS and SIMS) and Sm–Nd whole-rock geochronology of the Gour Oumelalen granulitic basement, Hoggar massif, Tuareg shield, Algeria. Journal of African Earth Sciences 37, 229–39.CrossRefGoogle Scholar
Pin, C, Kryza, R, Oberc-Dziedzic, T, Mazur, S, Turniak, K and Waldhausrová, J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: A review based on Sm-Nd isotope and geochemical data. In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision (eds U Linnemann, RD Nance, P Kraft & G Zulauf), pp. 209229, Geological Society of America.Google Scholar
Puziewicz, J, Mazur, S and Papiewska, C (1999) Petrography and origin of two-mica paragneisses and amphibolites of the Doboszowice Metamorphic Unit (Sudetes, SW Poland). Archiwum Mineralogiczne 52, 3570.Google Scholar
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Roser, BP and Korsch, RJ (1986) Determination of tectonic setting of sandstone – mudstone suits using SiO2 content and K2O/Na2O ratio. Journal of Geology 94, 635–50.CrossRefGoogle Scholar
Schandl, ES and Gorton, MP (2002) Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology 97, 629–42.CrossRefGoogle Scholar
Schulmann, K, Konopásek, J, Janousek, V, Lexa, O, Lardeaux, J-M, Edel, J-B, Stípská, P and Ulrich, S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geosciences 341, 266–86.CrossRefGoogle Scholar
Shand, JS (1943) Eruptive Rocks. Their Genesis Composition. Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. New York: John Wiley & Sons, 444p.Google Scholar
Sláma, J, Dunkley, DJ, Kachlík, V and Kusiak, MA (2008b) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461, 4459.CrossRefGoogle Scholar
Sláma, J, Košler, J, Condon, DJ, Crowley, JL, Gerdes, A, Hanchar, JM, Horstwood, MSA, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U, Schoene, B, Tubrett, MN and Whitehouse, MJ (2008a) Plešovice zircon — a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Śliwiński, M, Jastrzębski, M and Sláma, J (2022) Detrital zircon analysis of metasedimentary rocks of the Staré Mìsto Belt, Sudetes: implications for the provenance and evolution of the eastern margin of the Saxothuringian terrane, NE Bohemian Massif. Geological Quarterly 66, 121.CrossRefGoogle Scholar
Soejono, I, Machek, M, Sláma, J, Janoušek, V and Kohút, M (2020) Cambro-Ordovician anatexis and magmatic recycling at the thinned Gondwana margin: new constraints from the Kouřim Unit, Bohemian Massif. Journal of the Geological Society 177, 325–41.CrossRefGoogle Scholar
Soejono, I, Schulmann, K, Sláma, J, Hrdličková, K, Hanžl, P, Konopásek, J, Collett, S and Míková, J (2022) Pre-collisional crustal evolution of the European Variscan periphery: constraints from detrital zircon U–Pb ages and Hf isotopic record in the Precambrian metasedimentary basement of the Brunovistulian Domain. Precambrian Research 372, 106606.CrossRefGoogle Scholar
Soejono, I, Žáčková, E, Janoušek, V, Machek, M and Košler, J (2010) Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan orogen: Letovice Complex, Bohemian Massif. Journal of the Geological Society 167, 1113–30.CrossRefGoogle Scholar
Spandler, C, Hermann, J and Rubatto, D (2004) Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. American Mineralogist 89, 1795–806.CrossRefGoogle Scholar
Strachan, RA, Linnemann, U, Jeffries, T, Drost, K and Ulrich, J (2014) Armorican provenance for the mélange deposits below the Lizard ophiolite (Cornwall, UK): evidence for Devonian obduction of Cadomian and Lower Palaeozoic crust onto the southern margin of Avalonia. International Journal of Earth Sciences 103, 1359–83.CrossRefGoogle Scholar
Sun, SS and McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Magmatism in the ocean basins 42, 313–45.Google Scholar
Sylvester, PJ (1998) Post-Collisional strongly peraluminous granites. Lithos 45, 2944.CrossRefGoogle Scholar
Szczepanski, J, Anczkiewicz, R and Marciniak, D (2022) P-T conditions and chronology of the Variscan collision in the easternmost part of the Saxothuringian crust (Bohemian Massif, Fore-Sudetic Block, Poland). Mineralogia – Special Papers 50, 88.Google Scholar
Szczepański, J and Goleń, M (2022) Tracing exhumation record in high-pressure micaschists: a new tectonometamorphic model of the evolution of the eastern part of the Fore Sudetic Block, Kamieniec Metamorphic Belt, NE Bohemian Massif, SW Poland. Geochemistry 82, 125859.CrossRefGoogle Scholar
Szczepański, J and Ilnicki, S (2014) From Cadomian arc to Ordovician passive margin: geochemical records preserved in metasedimentary successions of the Orlica-Śnieżnik Dome in SW Poland. International Journal of Earth Sciences 103, 627–47.CrossRefGoogle Scholar
Szczepański, J and Marciniak, D (2018) PT history preserved in mica schists from the Doboszowice Metamorphic Complex (Bohemian Massif, Fore-Sudetic Block). Mineralogia – Special Papers 48, 86.Google Scholar
Szczepański, J, Turniak, K, Anczkiewicz, R and Gleichner, P (2020) Dating of detrital zircons and tracing the provenance of quartzites from the Bystrzyckie Mts: implications for the tectonic setting of the Early Palaeozoic sedimentary basin developed on the Gondwana margin. International Journal of Earth Sciences 109, 2049–79.CrossRefGoogle Scholar
Szczepański, J, Zhong, X, Dąbrowski, M, Wang, H and Goleń, M (2022) Combined phase diagram modelling and quartz-in-garnet barometry of HP metapelites from the Kamieniec Metamorphic Belt (NE Bohemian Massif). Journal of Metamorphic Geology 40, 337.CrossRefGoogle Scholar
Tabaud, AS, Štípská, P, Mazur, S, Schulmann, K, Míková, J, Wong, J and Sun, M (2021) Evolution of a Cambro-Ordovician active margin in northern Gondwana: geochemical and zircon geochronological evidence from the Góry Sowie metasedimentary rocks, Poland. Gondwana Research 90, 126.CrossRefGoogle Scholar
Taylor, SR and McLennan, SM (1985) The Continental Crust; Its Composition and Evolution; An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Science Publications,  312p.Google Scholar
Taylor, SR and McLennan, SM (1995) The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241–65.CrossRefGoogle Scholar
Tichomirowa, M, Berger, H-J, Koch, EA, Belyatski, BV, Götze, J, Kempe, U, Nasdala, L and Schaltegger, U (2001) Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56, 303–32.CrossRefGoogle Scholar
Torsvik, TH (2017) Earth History and Palaeogeography: Trond H. Torsvik, University of Oslo, and L. Robin M. Cocks. London: The Natural History Museum.Google Scholar
Turniak, K, Mazur, S and Wysoczański, R (2000) SHRIMP zircon geochronology and geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodinamica Acta 13, 293312.CrossRefGoogle Scholar
Valverde-Vaquero, P, Dörr, W, Belka, Z, Franke, W, Wiszniewska, J and Schastok, J (2000) U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth and Planetary Science Letters 184, 225–40.CrossRefGoogle Scholar
Verma, SP and Armstrong-Altrin, JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology 355, 117–33.CrossRefGoogle Scholar
Verma, SP, Pandarinath, K, Verma, SK and Agrawal, S (2013) Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 168–169, 113–23.CrossRefGoogle Scholar
Whitney, DL and Evans, BW (2010) Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–7.CrossRefGoogle Scholar
Wiedenbeck, M, Allé, P, Corfu, F, Griffin, WL, Meier, M, Oberli, F, Quadt, AV, Roddick, JC and Spiegel, W (1995) Three natural zircon standards for U-TH-PB, LU-HF, trace element and ree analyses. Geostandards and Geoanalytical Research 19, 123.CrossRefGoogle Scholar
Wimmenauer, W (1984) Das pravariskische Kristallin im Schwarzwald. Fortschritt der Mineralogie 62, 6986.Google Scholar
Winchester, JA and Floyd, PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Winchester, JA, Pharaoh, TC, Verniers, J, Ioane, D and Seghedi, A (2006) Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. Geological Society, London, Memoirs 32, 323–32.CrossRefGoogle Scholar
Žáčková, E, Konopásek, J, Košler, J and Jeřábek, P (2010) Detrital zircon populations in quartzites of the Krkonoše–Jizera Massif: implications for pre-collisional history of the Saxothuringian Domain in the Bohemian Massif. Geological Magazine 149, 443–58.CrossRefGoogle Scholar
Žák, J, Kraft, P and Hajná, J (2013) Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. International Journal of Earth Sciences 102, 415–33.CrossRefGoogle Scholar
Žák, J and Sláma, J (2018) How far did the Cadomian ‘terranes’ travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology. International Geology Review 60, 319–38.CrossRefGoogle Scholar
Žák, J, Sláma, J, Syahputra, R and Nance, RD (2023) Dynamics of Cambro–Ordovician rifting of the northern margin of Gondwana as revealed by the timing of subsidence and magmatism in rift-related basins. International Geology Review, 124.Google Scholar
Żelaźniewicz, A, Dörr, W, Bylina, P, Franke, W, Haack, U, Heinisch, H, Schastok, J, Grandmontagne, K and Kulicki, C (2004) The eastern continuation of the Cadomian orogen: U–Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. International Journal of Earth Sciences 93, 773–81.CrossRefGoogle Scholar
Zieger, J, Linnemann, U, Hofmann, M, Gärtner, A, Marko, L and Gerdes, A (2018) A new U–Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian. International Journal of Earth Sciences 107, 933–53.CrossRefGoogle Scholar
Supplementary material: File

Szczepański et al. supplementary material

Tables S1-S3

Download Szczepański et al. supplementary material(File)
File 49.6 KB