Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T17:42:33.221Z Has data issue: false hasContentIssue false

Stratigraphy of Cretaceous to Lower Pliocene sediments in the northern part of Cyprus based on comparative 87Sr/86Sr isotopic, nannofossil and planktonic foraminiferal dating

Published online by Cambridge University Press:  29 October 2012

GILLIAN A. MCCAY
Affiliation:
School of GeoSciences, Grant Institute, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JW, UK
ALASTAIR H. F. ROBERTSON*
Affiliation:
School of GeoSciences, Grant Institute, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JW, UK
DICK KROON
Affiliation:
School of GeoSciences, Grant Institute, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JW, UK
ISABELLA RAFFI
Affiliation:
Dipartimento di Ingegneria e Geotecnologie (InGeo), CeRSGeoUniversità degli Studi ‘G. d'Annunzio’ di Chieti-Pescara Campus Universitario, via dei Vestini 31 66013 Chieti Scalo, Italy
ROBERT M. ELLAM
Affiliation:
Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
MEHMET NECDET
Affiliation:
Geology and Mines Department, Ankara Avenue, Lefkoşa (Nicosia), Cyprus
*
Author for correspondence: Alastair.Robertson@ed.ac.uk

Abstract

New age data from Sr isotope analysis and both planktonic foraminifera and nannofossils are presented and discussed here for the Upper Eocene–Upper Miocene sedimentary rocks of the Değirmenlik (Kythrea) Group. New dating is also given of some Cretaceous and Pliocene sediments. In a revised stratigraphy the Değirmenlik (Kythrea) Group is divided into ten formations. Different Upper Miocene formations are developed to the north and south of a regionally important, E–W-trending syn-sedimentary fault. The samples were dated wherever possible by three independent methods, namely utilizing Sr isotopes, calcareous nannofossils and planktonic foraminifera. Some of the Sr isotopic dates are incompatible with the nannofossil and/or the planktonic foraminiferal dates. This is mainly due to reworking within gravity-deposited or current-affected sediments. When combined, the reliable age data allow an overall biostratigraphy and chronology to be erected. Several of the boundaries of previously defined formations are revised. Sr data that are incompatible with well-constrained biostratigraphical ages are commonly of Early Miocene age. This is attributed to a regional uplift event located to the east of Cyprus, specifically the collision of the Anatolian (Eurasian) and Arabian (African) plates during Early Miocene time. This study, therefore, demonstrates that analytically sound Sr isotopic ages can yield geologically misleading ages, particularly where extensive sediment reworking has occurred. Convincing ages are obtained when isotopic dating is combined with as many forms of biostratigraphical dating as possible, and this may also reveal previously unsuspected geological events (e.g. tectonic uplift or current activity).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, H. A. & Brasier, M. D. 2005. Microfossils, 2nd ed. Oxford: Blackwell Publishing, 296 pp.Google Scholar
Baroz, F. 1979. Etude géologique dans le Pentadaktylos et la Mesaoria (Chypre Septentrionale). Thèse pour l'obtention du grade de Docteur d'État mention Sciences. Université de Nancy, Nancy, France. Published thesis.Google Scholar
Baroz, F. & Bizon, G. 1974. Le Néogène de la chaîne du Pentadaktylos et de la partie nord de la Mésaoria (Chypre); étude stratigraphique micropaléontologique. Revue de l'Institut Français du Pétrole 29 (3), 327–59.Google Scholar
Bellamy, C. V. & Jukes-Browne, A. J. 1905. The Geology of Cyprus. Plymouth: William Brendon and Son Ltd, 72 pp.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III & Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbole, J.), pp. 129212. Tulsa, Oklahoma: Society of Economic Paleontologists and Mineralogists, Special Publication 54.Google Scholar
Boulton, S. J., Robertson, A. H. F., Ellam, R. M., Safak, Ü. & Ünlügenç, U. C. 2007. Strontium isotopic and micropalaeontological dating used to redefine the stratigraphy of the Neotectonic Hatay Graben, southern Turkey. Turkish Journal of Earth Sciences 16, 141–79.Google Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Amsterdam: Elsevier.Google Scholar
Cande, S. C. & Kent, D. V. 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 6093–5.Google Scholar
Ducloz, C. 1972. The Geology of the Bellapais-Kythrea Area of the Central Kyrenia Range. Geological Survey Department of Cyprus Bulletin 6.Google Scholar
Eaton, S. & Robertson, A. H. F. 1993. The Miocene Pakhna Formation, southern Cyprus and its relationship to the Neogene tectonic evolution of the eastern Mediterranean. Sedimentary Geology 86, 273–96.Google Scholar
Flecker, R. & Ellam, R. M. 1999. Distinguishing climatic and tectonic signals in the sedimentary successions of marginal basins using Sr isotopes: an example from the Messinian salinity crisis, Eastern Mediterranean. Journal of the Geological Society, London 156, 847–54.Google Scholar
Flecker, R., Ellam, R. M., Müller, C., Poisson, A., Robertson, A. H. F. & Turner, J. 1998. Application of Sr isotope stratigraphy and sedimentary analysis to the origin and evolution of the Neogene basins in the Isparta Angle, southern Turkey. Tectonophysics 298, 83101.Google Scholar
Flecker, R., de Villiers, S. & Ellam, R. M. 2002. Modelling the effect of evaporation on the salinity-87Sr/86Sr relationship in modern and ancient marginal-marine systems; the Mediterranean salinity crisis. Earth and Planetary Science Letters 203, 221–33.Google Scholar
Hakyemez, Y., Turhan, N., Sönmez, İ. & Sümengen, M. 2000. Kuzey Kıbrıs Türk Cumhuriyeti’ nin Jeolojisi. MTA (Geology of the Turkish Republic of Northern Cyprus). Genel Müdürlüğü Jeoloji Etütleri Diaresi, Ankara (MTA), 44 pp.Google Scholar
Hakyemez, A. & Özkan-Altıner, S. 2007. Beşparmak Dağları’ndaki (Kuzey Kıbrıs) Üst Maastrihtiyen-Eosen istifinin planktonik foraminifer biyostratigrafisi (Planktic foraminiferal biostratigraphy of the Upper Maastrichtian–Eocene sequence in the Beşparmak Range, Northern Cyprus). 60th Geological Congress of Turkey, Ankara, Abstract, pp. 416–19.Google Scholar
Harrison, R. W., Newell, W. L., Batihanli, H., Panayides, I., McGeehin, J. P., Mahan, S. A., Ozhur, A., Tsiolakis, E. & Necdet, M. 2004. Tectonic framework and Late Cenozoic tectonic history of the northern part of Cyprus: implications for earthquake hazards and regional tectonics. Journal of Asian Earth Sciences 23, 191210.Google Scholar
Henson, F. R. S., Browne, R. V. & McGinty, J. 1949. A synopsis of the stratigraphy and geological history of Cyprus. Quarterly Journal of the Geological Society of London CV, 237.Google Scholar
Howarth, R. J. & McArther, J. M. 1997. Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine strontium isotope curve for the period 0 to 206 Ma, with look-up table for the derivation of numerical age. Journal of Geology 105, 441–56.CrossRefGoogle Scholar
Hsü, K. J., Cita, M. B. & Ryan, W. B. F. 1973. The origin of the Mediterranean evaporites. In Initial Reports of the Deep Sea Drilling Project, Vol. XIII (eds Ryan, W. B. F., Hsü, K. J. & Cita, M. B.), pp. 1203–31. Washington, DC: US Government Printing Office.Google Scholar
Lord, A. R., Panayides, A., Urquhart, E. & Xenophontos, C. 2000. A biostratigraphical framework for the Late Cretaceous-Recent circum-Troodos sedimentary sequence, Cyprus. In Proceedings of the Third Internal Conference on the Geology of the Eastern Mediterranean (eds Panayides, I., Xenophontos, C., & Malpas, J.), pp. 289–98. Nicosia: Geological Survey Department of Cyprus.Google Scholar
Martini, E. 1971. Standard Tertiary and Quarternary calcareous nannoplankton zonation. In Proceedings of the II Planktonic Conference, Rome (ed. Farinacci, A.), pp. 739–85.Google Scholar
McCay, G. & Robertson, A. H. F. 2012 a. Late Eocene–Neogene sedimentary geology of the Girne (Kyrenia) Range, northern Cyprus: a case history of sedimentation related to progressive and diachronous continental collision. Sedimentary Geology 265–266, 3055.Google Scholar
McCay, G. & Robertson, A. H. F. 2012 b. Upper Miocene–Pleistocene deformation of the Girne (Kyrenia) Range and Dar Dere (Ovgos) lineaments, N Cyprus: role in collision and tectonic escape in the easternmost Mediterranean region. In Geological Development of the Anatolia and the Easternmost Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, U. C.). Geological Society of London, Special Publication no. 372, first published online 5 September 2012. doi: 10.1144/SP372.6 Google Scholar
Miller, K. G., Feigenson, M. D., Kent, D. V. & Olsson, R. K. 1988. Oligocene stable isotope (87Sr/86Sr, delta 18O, delta 13C) standard section, Deep Sea Drilling Project Site 522. Palaeoceanography 3, 223–33.Google Scholar
Miller, K. G., Feigenson, M. D., Wright, J. D. & Clement, B. M. 1991. Miocene isotope reference section, deep sea drilling project site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6, 3352.CrossRefGoogle Scholar
Moore, T. A. 1960. The Geology and Mineral Resources of the Astromeritis-Kormakiti Area. Geological Survey Department of Cyprus, Memoir 6.Google Scholar
Necdet, M. & Anıl, M. 2006. The geology and geochemistry of the gypsum deposits in Northern Cyprus. Geosound (Yerbilimleri) 48–49, 1149.Google Scholar
Okay, A. İ., Zattin, M. & Cavazza, W. 2010. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38, 35–8.CrossRefGoogle Scholar
Raffi, I., Mozzato, C., Fornaciari, E., Hilgen, F. J. & Rio, D. 2003. Late Miocene calcareous nannofossil biostratigraphy and astrobiochronology for the Mediterranean region. Micropaleontology 49, 126.Google Scholar
Robertson, A. H. F., Parlak, O., Rizaoğlu, T, Ünlügenç, U., İnan, N., Tasli, K. & Ustaömer, T. 2007. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). In Deformation of the Continental Crust: The Legacy of Mike Coward (eds Ries, A. C., Butler, R. W. H. & Graham, R. H.), pp. 231–70. Geological Society of London, Special Publication no. 272.Google Scholar
Robertson, A. H. F., Taslı, K. & İnan, N. 2012. Evidence from the Kyrenia Range, Cyprus, of the northerly active margin of the Southern Neotethys during Late Cretaceous-Early Cenozoic time. Geological Magazine 149, 264–90.Google Scholar
Robertson, A. H. F., Ünlügenç, U., İnan, N., Tasli, K. 2004. The Misis–Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey. Journal of Asian Earth Sciences 22, 413–53.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1986. The role of the Kyrenia Range lineament, Cyprus, in the geological evolution of the Eastern Mediterranean area. In Major Crustal Lineaments and Their Influence on the Geological History of Continental Lithosphere (eds Reading, H. G., Watterson, J. & White, S. H.). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 317, 141–77.Google Scholar
Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. 2011. Review and revision of Cenozoic tropical planktic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Science Review 104, 111–42.Google Scholar
Weiler, Y. 1969. The Miocene Kythrea Flysch Basin. In Cyprus. Committee of Mediterranean Neogene Stratigraphy, Proceedings IV Session, Bologna. Giornale di Geologia, Série 2 XXXV, fasc. IV, 213–29.Google Scholar
Weiler, Y. 1970. Mode of occurrence of pelites in the Kythrea Flysch Basin (Cyprus). Journal of Sedimentary Petrology 40, 1255–61.Google Scholar
Yetiş, C., Kelling, G., Gökçen, S. L. & Baroz, F. 1995. A revised stratigraphic framework for later Cenozoic sequences in the northeastern Mediterranean region. International Journal of Earth Sciences 84, 794812.Google Scholar
Supplementary material: File

McCay Supplementary Material

Appendix

Download McCay Supplementary Material(File)
File 1.4 MB