Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T11:07:07.188Z Has data issue: false hasContentIssue false

The carbon- and oxygen-isotope record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation

Published online by Cambridge University Press:  01 May 2009

Martin D. Brasier
Affiliation:
Department of Earth Sciences, University of Oxford, Oxford OX1 3PR, UK
Mordeckai Magaritz
Affiliation:
Weizmann Institute of Science, Rehovot, 76 100, Israel
Richard Corfield
Affiliation:
Department of Earth Sciences, University of Oxford, Oxford OX1 3PR, UK
Luo Huilin
Affiliation:
Yunnan Institute of Geology, Kunming, China
Wu Xiche
Affiliation:
Yunnan Institute of Geology, Kunming, China
Ouyang Lin
Affiliation:
Yunnan Institute of Geology, Kunming, China
Jiang Zhiwen
Affiliation:
Yunnan Institute of Geology, Kunming, China
B. Hamdi
Affiliation:
Geological Survey, Tehran, Iran
He Tinggui
Affiliation:
Chengdu College of Geology, Sichuan, China
A. G. Fraser
Affiliation:
Department of Geology, Hull University, Hull HU6 7RX, UK

Abstract

The fossiliferous section at Meishucun of Yunnan, China, is a candidate stratotype section for the Precambrian–Cambrian boundary. Early diagenetic dolomites and phosphorites have been sampled across the boundary interval here, and in the correlated section at Maidiping in Sichuanand Valiabad in Iran, for comparison of their carbon and oxygen isotopes. This is the first such study that is calibrated by biostratigraphy in the interval from the earliest (pre-Tommotian) skeletal fossils to trilobites. Although negative oxygen isotopes indicate a diagenetic signal in the Zhongyicun Member and basal Badaowan Member phosphorites, two carbon-isotope cycles are clearly present and can be correlated in dolomitic rocks between the two sections. The first appearance datum (FAD) of the earliest skeletal assemblage (zone I, Marker A), FAD of diverse micromolluscs (zone II, Marker B) and FAD of Chinese trilobites (zones IV, V) and Marker C appear at similar points on the carbon-isotope curve in the two Chinese sections. Integrated carbon-isotope and early skeletal fossil biostratigraphy is shown to have the potential to correlate further afield, with sections in Iran, as well as with India, Siberia, Morocco and Australia. We suggest that a distinctive positive excursion provides a global marker for the interval between Marker B and C in China and just below the Tommotian Stage of Siberia.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P., Schidlowski, M. & Singh, I. B. 1987. Chronostratigraphic markers in the end-Precambrian isotope record of the Lesser Himalaya. Nature 327, 699702.CrossRefGoogle Scholar
Anderson, T. F. & Arthur, M. A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentology and palaeoenvironmental problems. Society of Economic Paleontologists and Mineralogists, Short Course No. 10, 151 pp.CrossRefGoogle Scholar
Bengtson, S. & Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of south-eastern Newfoundland. Canadian Journal of Earth Sciences 20, 525–36.CrossRefGoogle Scholar
Bertrand-Sarfati, J. 1981. Problème de la limite Précambrien-Cambrien dans la section de Tiout (Maroc). Newsletter in Stratigraphy 10, 20–6.CrossRefGoogle Scholar
Brasier, M. D. 1976. Early Cambrian intergrowths of archaeocyathids, Renalcis and pseudostromatolites from South Australia. Palaeontology 19, 223–45.Google Scholar
Brasier, M. D. 1979. The Cambrian radiation event. In The Origin of Major Invertebrate Groups (ed. House, M. R.), pp. 103–59. Systematics Association Special Volume no. 12. London: Academic Press.Google Scholar
Brasier, M. D. 1987. ‘Inner Tethyan’ Precambrian–Cambrian boundary sequences from China, India, Pakistan and Iran. Abstracts of the International Symposium on Terminal Precambrian and Cambrian Geology, Yichang, 12.Google Scholar
Brasier, M. D. 1989. China and the Palaeotethyan Belt (India, Pakistan, Iran, Kazakhstan, and Mongolia). In The Precambrian–Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 4074. Oxford: Clarendon Press.Google Scholar
Brasier, M. D. in press. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval. In Phosphorite Research and Development (eds Nortolt, A. G. & Jarvis, I.). Geological Society Special Publication, London.Google Scholar
Brasier, M. D. & Magaritz, M. 1989. Towards an integrated carbon isotope–small shelly fossil stratigraphy for the Precambrian–Cambrian boundary. 28th International Geological Congress, Washington D.C., Abstracts 1, 195–6.Google Scholar
Brasier, M. D. & Singh, P. 1987. Microfossils and Precambrian–Cambrian boundary stratigraphy at Maldeota, Lesser Himalaya. Geological Magazine 124, 323–45.CrossRefGoogle Scholar
Chen, Junjuan, Hou, Xianguang & Luo, Haozhi. 1989. Early Cambrian netted scale-bearing worm-like sea animal. Acta Palaeontologica Sinica 28, 116 (in Chinese with English summary).Google Scholar
Conway Morris, S. 1987. The search for the Precambrian-Cambrian boundary. American Scientist 75, 157–67.Google Scholar
Cook, P. J. & Shergold, J. H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary. Nature 308, 231–6.CrossRefGoogle Scholar
Cook, P. J. & Shergold, J. H. 1986. Proterozoic and Cambrian phosphorites–nature and origins. In Proterozoic and Cambrian Phosphorites (eds Cook, P. J. and Shergold, J. H.), pp. 369–86. Cambridge University Press.Google Scholar
Cowie, J. W. 1985. Continuing work on the Precambrian-Cambrian boundary. Episodes 8, 93–7.CrossRefGoogle Scholar
Cowie, J. W. & Brasier, M. D. (eds) 1989. The Precambrian-Cambrian Boundary. Oxford: Clarendon Press.Google Scholar
Debrenne, F. & Debrenne, M. 1978. Archaeocyathid fauna from the lowest fossiliferous levels at Tiout (Lower Cambrian, Southern Morocco). Geological Magazine 115, 101–19.CrossRefGoogle Scholar
Edgell, J. S. 1989. Infracambrian salt basins and their role in prolific hydrocarbon generation. 28th International Geological Congress, Washington D.C., Abstracts 1, 433–4.Google Scholar
Hamdi, B., Brasier, M. D. & Jiang, Zhiwen. 1989. Earliest skeletal fossils from Precambrian–Cambrian boundary strata, Elburz Mountains, Iran. Geological Magazine 126, 283–9.CrossRefGoogle Scholar
Harland, W. B. 1989. Palaeoclimatology. In The Precambrian–Cambrian Boundary (eds Cowie, J. W. & Brasier, M. D.), pp. 199204. Oxford: Clarendon Press.Google Scholar
Holser, W. T. 1977. Catastrophic chemical events in the history of the ocean. Nature 267, 403–8.CrossRefGoogle Scholar
Hsü, K. J., Oberhansli, H., Gao, J. Y., Sun, Shu, Chen, Haihong & Krahenbuhl, U. 1985. ‘Strangelove ocean’ before the Cambrian explosion. Nature 316, 809–11.CrossRefGoogle Scholar
Hudson, J. D. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society of London 136, 157–64.Google Scholar
Jiang, Zhiwen, Brasier, M. D. & Hamdi, B. 1988. Correlation of the Meishucunian Stage in South Asia. Acta Geologica Sinica 3, 191–9 (in Chinese).Google Scholar
Khomentovsky, V. V. 1986. The Vendian System of Siberia and a standard stratigraphic scale. Geological Magazine 123, 333–48.CrossRefGoogle Scholar
Klinkhammer, G. P. & Lambert, C. E. 1989. Preservation of organic matter during salinity excursions. Nature 339, 271–4.CrossRefGoogle Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–8.CrossRefGoogle ScholarPubMed
Lambert, I. B., Walter, M. R., Zang, Wenlong, Lu, Songnian & Ma, Guogan. 1987. Palaeoenvironment and carbon isotope stratigraphy of the Yangtze Platform. Nature 325, 140–2.CrossRefGoogle Scholar
Landing, E. 1988. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology 62, 661–95.Google Scholar
Li, Yuyuan. 1986. Proterozoic and Cambrian phosphorites–regional review: China. In Proterozoic and Cambrian Phosphorites (eds Cook, P. J. and Shergold, J. H.), pp. 4262. Cambridge University Press.Google Scholar
Luo, Huilin, Jiang, Zhiwen, Wu, Xiche, Song, Xueliang & Ouyang, Lin. 1982. The Sinian-Cambrian Boundary in Eastern China. People's Publishing House, Yunnan, China, 265 pp.Google Scholar
Luo, Huilin, Jiang, Zhiwen, Wu, Xiche, Song, Xueliang, Ouyang, Lin, Xing, Yusheng, Liu, Guizhi, Zhang, Shishan & Tao, Yonghe. 1984. Sinian–Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China. People's Publishing House, Yunnan, China, 154 pp. (in Chinese).Google Scholar
Magaritz, M. M. 1983. Carbon and oxygen isotopic composition of recent and ancient coated grains. In Coated Grains (ed. Peryt, T. M.), pp. 2737. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Magaritz, M. M. 1985. The carbon isotope record of dolostones as a stratigraphic tool: a case study from the Upper Cretaceous shelf sequence, Israel. Sedimentary Geology 45, 115–23.CrossRefGoogle Scholar
Magaritz, M. M. 1989. δ13C minima follow extinction events: a clue to faunal radiation. Geology 17, 337–40.2.3.CO;2>CrossRefGoogle Scholar
Magaritz, M. M., Holser, W. T. & Kirschvink, J. L. 1986. Carbon-isotope events across the Precambrian boundary on the Siberian Platform. Nature 320, 258–9.CrossRefGoogle Scholar
Magaritz, M. M. & Kafri, U. 1981. Stable isotope and Sr2+/Ca2+ ratio evidence of diagenetic dedolomitization in a schizohaline environment in Cenomanian rocks in north Israel. Sedimentary Geology 28, 2941.CrossRefGoogle Scholar
Missarzhevsky, V. V. & Mambetov, A. J. 1981. [Stratigraphy and fauna of Cambrian and Precambrian boundary beds of Maly Karatau]. Trudy Akademii Nauk SSSR, Moscow 326, 190 (in Russian).Google Scholar
Moczydlowska, M. & Vidal, G. 1988. How old is the Tommotian? Geology 16, 166–8.2.3.CO;2>CrossRefGoogle Scholar
Narbonne, G. M., Myrow, P. M., landing, E. & Anderson, M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Qian, Yi & Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province. South China. Fossils and Strata no. 24, 156 pp.Google Scholar
Rozanov, A. Yu., Missarzhevsky, V. V., Voronova, L. G., Volkova, N. A., Krylov, J. N., Keller, B. M., Lendzion, K., Michyak, R., Korylyuk, J. K., Pychova, N. G. & Sidorov, A. D. 1969. (The Tommotian Stage and the Cambrian Lower Boundary Problem). Trudy Geologecheskii Institut, Nauka, Moscow, 206. (In Russian; English translation, U.S. Department of the Interior, 1981).Google Scholar
Rozanov, A. Yu & Sokolov, B. S. (eds) 1984. [Lower Cambrian Stage Subdivision. Stratigraphy.] Akademii Nauk SSSR: Izdatelstvo ‘Nauka’, Moscow, 182 pp. (in Russian).Google Scholar
Schidlowski, M. 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–18.CrossRefGoogle Scholar
Schmidt, M. 1979. The section of Tiout (Precambrian–Cambrian boundary beds), Anti-Atlas, Morocco: stromatolites and their biostratigraphy. Arbeit Paläontologische Institut Würzburg 2, 1118.Google Scholar
Sdzuy, K. 1978. The Precambrian–Cambrian boundary beds in Morocco (preliminary report). Geological Magazine 115, 8394.CrossRefGoogle Scholar
Tucker, M. E. 1986. Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature 319, 48–9.CrossRefGoogle Scholar
Tucker, M. E. in press. Carbon isotopes and Precambrian–Cambrian geology, South Australia: ocean basin formation, seawater chemistry and organic evolution. Terra Nova.Google Scholar
Williams, D. F., Lerche, I. & Full, W. E. 1988. Isotope Chronostratigraphy. Theory and Methods. San Diego: Academic Press.Google Scholar
Xiang, Liwen, Li, Shanji, Nan, Runshan, Guo, Shenming, Yang, Jialu, Zhou, Guoqiang, An, Taixiang, Yuan, Kexing, Zhang, Sengui & Qian, Yi. 1981. (Stratigraphy of China, No. 4. The Cambrian System of China). Geological Publishing House, Beijing, 198 pp. (in Chinese.)Google Scholar
Xing, Yusheng, Ding, Qixiu, Luo, Huilin, He, Tinggui & Wang, Yangeng. 1984 a (date of cover 1983). The Sinian–Cambrian Boundary of China. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 10 (in Chinese).Google Scholar
Xing, Yusheng, Ding, Qixiu, Luo, Huilin, He, Tinggui & Wang, Yangeng. 1984. The Sinian–Cambrian boundary of China and its related problems. Geological Magazine 121, 155–70.Google Scholar
Xu, Daoyi, Zhang, Qinwen, Sun, Yiyin & Yan, Zheng. 1985. Three main mass extinctions–significant indicators of major natural divisions of geological history in the Phanerozoic. Modern Geology 9, 111.Google Scholar
Xu, Daoyi, Zhang, Qinwen, Sun, Yiyin, Yang, Zheng, Chai, Zhifang & He, Jinwen. 1989. Astrogeological Events in China. Beijing: Geological Publishing House and Edinburgh: Scottish Academic Press.Google Scholar
Zhang, Qinwen, Xu, Daoyi, Sun, Ying, Yang, Zhengzhong & Chai, Zhifang. 1987. The rare event at the Precambrian–Cambrian boundary and the stratigraphic position of this boundary. Modern Geology 11, 6977.Google Scholar