Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:22:40.446Z Has data issue: false hasContentIssue false

Contrasting Middle Jurassic and Early Cretaceous mafic intrusive rocks from western Liaoning, North China craton: petrogenesis and tectonic implications

Published online by Cambridge University Press:  07 May 2010

XIAOHUI ZHANG*
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
HONGFU ZHANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
NENG JIANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
SIMON A. WILDE
Affiliation:
Department of Applied Geology, Curtin University of Technology, Perth, WA 6845, Australia
*
Author for correspondence: zhangxh@mail.iggcas.ac.cn

Abstract

Zircon U–Pb dating, whole-rock major oxide, trace element and Sr–Nd isotopic data are presented for the Late Mesozoic mafic intrusive rocks from Yiwulüshan of western Liaoning along the eastern segment of the Yanshan belt, North China craton, with two episodes of magmatism documented. Middle Jurassic hornblende-rich gabbros show enrichment of large ion lithophile elements and light REE, and prominent depletion in high field strength elements, and possess moderately enriched isotopic compositions with (87Sr/86Sr)i ranging from 0.7056 to 0.7065 and ɛNd(t) from −5.0 to −7.1. These features suggest that the gabbros were derived from an amphibole-bearing harzburgitic lithospheric mantle source metasomatized recently by slab-derived fluids. By contrast, Early Cretaceous mafic dykes are gabbroic dioritic to dioritic in composition, with comparable trace element characteristics to continental crust and depleted isotopic signatures ((87Sr/86Sr)i = 0.7048–0.7055, ɛNd(t) = 0 to −3.0). They probably originated from partial melting of a relatively fertile asthenospheric mantle in the spinel stability field, with subsequent lower crustal assimilation and fractional crystallization. These two contrasting mafic intrusive suites, together with multiple Mesozoic mafic volcanic rocks from western Liaoning, documented a localized lithospheric thinning process, mainly through prolonged hydro-weakening or melt–rock interaction and triggered by gravitational collapse, possibly within an evolved post-collisional to within-plate extensional regime.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, Y. & Shinmura, T. 1995. Nd–Sr isotopic and geochemical characteristics of two contrasting types of calc-alkaline plutons in the Hida belt, Japan. Chemical Geology 124, 217–32.CrossRefGoogle Scholar
Bonin, B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting mantle and crustal sources? A review. Lithos 78, 124.CrossRefGoogle Scholar
Chen, B., Tian, W., Jahn, B. M. & Chen, Z. 2008. Zircon SHRIMP U–Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton: evidence for hybridization between mantle-derived magmas and crustal components. Lithos 102, 118–37.CrossRefGoogle Scholar
Cope, T. D. & Graham, S. A. 2007. Upper crustal response to Mesozoic tectonism in western Liaoning, North China, and implications for lithospheric delamination. In Mesozoic sub-continental lithospheric thinning under eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 201–22. Geological Society of London, Special Publication no. 280.Google Scholar
Coulon, C., Megartsi, M., Fourcade, S., Maury, R., Bellon, H., Louni-Hacini, A., Cotton, J., Coutelle, A. & Hermitte, D. 2002. Post-collisioanal transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62, 87110.CrossRefGoogle Scholar
Darby, B. J., Davis, G. A., Zhang, X. H., Wu, F. Y., Wilde, S. A. & Yang, J. H. 2004. The newly discovered Waziyu metamorphic core complex, Yiwulüshan, western Liaoning province, North China. Earth Science Frontiers 11, 145–55.Google Scholar
Davies, J. H. & von Blanckenburg, F. 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85102.CrossRefGoogle Scholar
Davis, G. A. 2003. The Yanshan belt of North China: tectonics, adakitic magmatism, and crustal evolution. Earth Science Frontiers 10, 373–84.Google Scholar
Davis, G. A., Zheng, Y., Wang, C., Darby, B. J., Zhang, C. & Gehrels, G. E. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. In Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation (eds Hendrix, M. S. & Davis, G. A.), pp. 171–97. Geological Society of America, Memoir no. 194.Google Scholar
DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
DePaolo, D. J. & Daley, E. E. 2000. Neodymium isotope in basalts of the southwest basin and range and the lithospheric thinning during continental extension. Chemical Geology 169, 157–85.CrossRefGoogle Scholar
Duggen, S., Hoernle, K., Van Den Bogaard, P. & Garbe-Schönberg, D. 2005. Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46, 11551201.CrossRefGoogle Scholar
England, P. & Houseman, G. 1989. Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research 94, 17561–79.CrossRefGoogle Scholar
Falloon, T. J., Green, D. H., Harton, C. J. & Harris, K. J. 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. Journal of Petrology 29, 1257–82.CrossRefGoogle Scholar
Fan, W. M., Guo, F., Wang, Y. J. & Zhang, H. F. 2007. Late Mesozoic mafic magmatism from the North China Block: constraints on chemical and isotopic heterogeneity of the subcontinental lithospheric mantle. In Mesozoic sub-continental lithospheric thinning under eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 77100. Geological Society of London, Special Publication no. 280.Google Scholar
Farmer, G. L. 2003. Continental basaltic rocks. Composition of the continental crust. In The Crust, Treatise in Geochemistry, vol. 3 (ed. Rudnick, R. L.), pp. 85121. Elsevier.Google Scholar
Fowler, M. B. & Henney, P. J. 1996. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba–Sr granite genesis. Contributions to Mineralogy and Petrology 126, 199215.CrossRefGoogle Scholar
Furman, T. & Graham, D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48, 237–62.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Xu, W. L., Yuan, H. L., Liu, Y. S., Walker, R. L., Puchtel, I. S., Liu, X. M., Huang, H., Wang, X. R. & Yang, J. 2008. Recycling deep cratonic lithosphere and generation of intraplate mgamatism in the North China Craton. Earth and Planetary Science Letters 270, 4153.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ayers, J., Wang, X. C. & Wang, Q. H. 2004. Recycling lower continental crust in the North China craton. Nature 432, 892–7.CrossRefGoogle ScholarPubMed
Griffin, W. L., Zhang, A. D., O'Reilly, S. Y. & Ryan, C. G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Mantle Dynamics and plate Interactions in East Asia (eds Flower, M. F. J., Chung, S. L., Lo, C. H. & Lee, T. Y.), pp. 107–26. American Geophysical Union, Geodynamics Series no. 27.CrossRefGoogle Scholar
Guo, F., Fan, W. M., Li, X. Y. & Li, C. W. 2007. Geochemistry of Mesozoic mafic volcanic rocks from the Yanshan belt in the northern margin of the North China Block: relations with post-collisional lithospheric extension. In Mesozoic sub-continental lithospheric thinning under eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 101–30. Geological Society of London, Special Publication no. 280.Google Scholar
Hawkesworth, C. J., Gallagher, K., Hergt, J. M. & McDermott, F. 1993. Mantle and slab contribution in arc magmas. Annual Review Earth and Planetary Science 21, 175204.CrossRefGoogle Scholar
Jahn, B. M., Wu, F., Lo, C. H. & Tsai, C. H. 1999. Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex. Chemical Geology 157, 119–46.CrossRefGoogle Scholar
Kay, R. W. & Kay, M. S. 1993. Delamination and delamination magmatism. Tectonophysics 219, 177–89.CrossRefGoogle Scholar
Kusky, T. M., Windley, B. F. & Zhai, M. G. 2007 a. Tectonic evolution of the North China Block: from orogen to craton to orogen. In Mesozoic sub-continental lithospheric thinning under eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 134. Geological Society of London, Special Publication no. 280.Google Scholar
Kusky, T. M., Windley, B. F. & Zhai, M. G. 2007 b. Lithospheric thinning in eastern Asia: constraints, evolution, tests of models. In Mesozoic sub-continental lithospheric thinning under eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 331–43. Geological Society of London, Special Publication no. 280.Google Scholar
La Flèche, M. R., Camiré, E. G. & Jenner, G. A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basins, Magdalen Islands, Québec, Canada. Chemical Geology 148, 115–36.CrossRefGoogle Scholar
Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. 1997. Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist 82, 1019–37.Google Scholar
Le Maitre, R. W. 2002. Igneous rocks: A classification and Glossary of Terms, 2nd edn. Cambridge: Cambridge University Press, 236 pp.CrossRefGoogle Scholar
Liaoning Bureau of Geology and Mineral Resources (LBGMR). 1998. 1:50000 scale regional geology of Fuxin and Badaohao, Liaoning Province (in Chinese).Google Scholar
Liégeois, J. 1998. Preface – some words on the post-collisional magmatism. Lithos 45, XVXVII.Google Scholar
Liu, D., Nutman, A. P., Compston, W., Wu, J. & Shen, Q. 1992. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–42.2.3.CO;2>CrossRefGoogle Scholar
Liu, H. T., Sun, S. H., Liu, J. M. & Zhai, M. G. 2002. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton: geochemistry and source region. Acta Petrologica Sinica 18, 257–74.Google Scholar
Liu, M. 2001. Cenozoic extension and magmatism in the North American Cordillera: the role of gravitational collapse. Tectonophysics 342, 407–33.CrossRefGoogle Scholar
Ludwig, K. 2001. User manual for isoplot/EX (2.49). Berkeley Geochronology Center Special Publication No. 1a. 55 pp.Google Scholar
Lugmair, G. W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Luo, Z. K., Miao, L. C., Guan, K., Qiu, Y. M., McNaughton, N. J. & Groves, D. I. 2001. SHRIMP U–Pb zircon ages of magmatic rocks in Paishanlou gold mine district, Fuxin, Liaoning province, China. Geochimica 30, 483–90.Google Scholar
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358–74.CrossRefGoogle Scholar
Meng, Q., Hu, J., Jin, J., Zhang, Y. & Xu, D. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China–Mongolia border region. Basin Research 15, 397415.CrossRefGoogle Scholar
Meng, Q. & Zhang, G. 2000. Geological framework and tectonic evolution of Qinling orogen, central China. Tectonophysics 323, 183–96.CrossRefGoogle Scholar
Menzies, M. A. 1987. Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere–lithosphere interaction. In Mantle Metasomatism (eds Menzies, M. A. & Hawkesworth, C. J.), pp. 313–61. London: Academic Press.Google Scholar
Menzies, M. A., Fan, W. & Zhang, M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M. et al. ), pp. 7181. Geological Society of London, Special Publication no. 76.Google Scholar
Menzies, M. A., Xu, Y. G., Zhang, H. F. & Fan, W. M. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China craton. Lithos 96, 121.CrossRefGoogle Scholar
Niu, Y. L. 2005. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic–Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities 11, 946.Google Scholar
Patiño Douce, A. E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25, 743–6.2.3.CO;2>CrossRefGoogle Scholar
Patiño Douce, A. E. & Beard, J. S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36, 707–38.CrossRefGoogle Scholar
Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. 1999. Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. Journal of Petrology 11, 15791611.CrossRefGoogle Scholar
Platt, J. P. & England, P. C. 1993. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. American Journal of Science 293, 307–36.Google Scholar
Rey, P., Vanderhaeghe, O. & Teyssier, C. 2001. Gravitational collapse of the continental crust: definitions, regimes, mechanisms and modes. Tectonophysics 342, 435–49.CrossRefGoogle Scholar
Roberts, M. P., Pin, C., Clemens, J. D. & Paquette, J. 2000. Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline Quérigut complex, French Pyrenees. Journal of Petrology 41, 809–44.CrossRefGoogle Scholar
Rudnick, R. L. & Gao, S. 2003. Composition of the continental crust. In The Crust, Treatise in Geochemistry, vol. 3 (ed. Rudnick, R. L.), pp. 164. Elsevier.Google Scholar
Şengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299307.CrossRefGoogle Scholar
Shao, J. A., Chen, F. K., Lu, F. X. & Zhou, X. H. 2006. Mesozoic pulsative upwelling diapirs of asthenosphere in west Liaoning province. Journal of China University Geoscience 31, 807–16.Google Scholar
Sisson, T. W., Grove, T. L. & Coleman, D. S. 1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contributions to Mineralogy and Petrology 126, 81108.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology, convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Stern, R. J. 2002. Subduction zones. Reviews of Geophysics 40, 1012, doi: 10.1029/2001RG000108.CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tomurtogoo, O., Windley, B. F., Kröner, A., Badarch, G. & Liu, D. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean suture and orogen. Journal of the Geological Society, London 162, 125–34.CrossRefGoogle Scholar
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelly, S., van Calsteren, P. & Deng, W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology 27, 4571.CrossRefGoogle Scholar
Turner, S. P., Platt, J. P., George, R. M. M., Kelley, S. P., Pearson, D. G. & Nowell, G. M. 1999. Magmatism associated with orogenic collapse of the Betic-Alboran Domian, SE Spain. Journal of Petrology 40, 1011–36.CrossRefGoogle Scholar
Vanderhaeghe, O. & Teyssier, C. 2001. Partial melting and flow of orogens. Tectonophysics 342, 451–72.CrossRefGoogle Scholar
Wang, K., Plank, T., Walker, J. D. & Smith, E. I. 2002. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research 107, doi: 10.1029/2001JB000209.CrossRefGoogle Scholar
Wang, X. R., Gao, S., Liu, X. M., Yuan, H. L., Hu, Z. C., Zhang, H. & Wang, X. C. 2006. Geochemistry of high-Mg andesites from the early Cretaceous Yixian Formation, western Liaoning: implications for lower crustal delamination and Sr/Y variations. Science in China (D) 49, 904–14.CrossRefGoogle Scholar
Wang, Z. H., Zhao, Y., Zou, H. B., Li, W. P., Liu, X. W., Wu, H., Xu, G. & Zhang, S. H. 2007. Petrogenesis of the Early Jurassic Nandaling flood basalts in the Yanshan belt, North China craton: A correlation between magmatic underplating and lithospheric thinning. Lithos 96, 543–66.CrossRefGoogle Scholar
Watson, S. & McKenzie, D. 1991. Melt generation by plumes: A study of Hawaiian volcanism. Journal of Petrology 32, 501–37.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralizing processes (eds McKibben, M. A., Shanks, W. C. III & Ridley, W. I.), pp. 1–35. Reviews in Economic Geology 7.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kroner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic belt. Journal of the Geological Society, London 164, 3147.CrossRefGoogle Scholar
Woodhead, J. D., Hergt, J. M., Davidson, J. P. & Eggins, S. M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth and Planetary Science Letters 192, 331–46.CrossRefGoogle Scholar
Wu, F. Y., Yang, J. H., Zhang, Y. B. & Liu, X. M. 2006. Emplacement ages of the Mesozoic granites in southeastern part of the the Western Liaoning province. Acta Petrologica Sinica 22, 315–25.Google Scholar
Wu, F. Y., Xu, Y. G., Gao, S. & Zheng, J. P. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica 24, 1145–74.Google Scholar
Wyllie, P. J. & Sekine, T. 1982. The formation of mantle phlogopite in subduction zone hybridization. Contributions to Mineralogy and Petrology 79, 375–80.CrossRefGoogle Scholar
Xiao, W., Windley, B. F., Hao, J. & Zhai, M. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22, 1069, doi: 10.1029 /2002TC001484.CrossRefGoogle Scholar
Xu, Y. G. 2001. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Physics and Chemistry of Earth (A) 26, 747–57.CrossRefGoogle Scholar
Yan, G., Mu, B., Xu, B., He, G., Tan, L., Zhao, H. & He, Z. H. 2000. Geochronology and isotopic features of Sr, Nd, and Pb of the Triassic alkali intrusions in the Yanshan–Yinshan regions. Science in China (D) 30, 384–7.Google Scholar
Yang, W. & Li, S. G. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: implications for lithospheric thinning of the North China craton. Lithos 120, 88117.CrossRefGoogle Scholar
Yang, J. H., Sun, J. F., Chen, F. K., Wilde, S. A. & Wu, F. Y. 2007. Sources and petrogenesis of Late Triassic doleritic dykes in the Liaodong peninsula: implications for post-collisional lithosphere thinning of the Eastern North China Craton. Journal of Petrology 48, 1973–97.CrossRefGoogle Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A., Chen, F. K., Liu, X. M. & Xie, L. W. 2008. Petrogenesis of an alkali syenites–granite–rhyolite suite in the Yanshan fold and thrust belt, eastern North China craton: geochronological, geochemical and Nd–Sr–Hf isotopic evidence for lithospheric thinning. Journal of Petrology 49, 315–51.CrossRefGoogle Scholar
Yang, Y. H., Wu, F. Y., Wilde, S. A., Liu, X. M., Zhang, Y. B., Xie, L. W. & Yang, J. H. 2009. In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China craton. Chemical Geology 264, 2442.CrossRefGoogle Scholar
Zhai, M. G., Fan, Q. C., Zhang, H. F., Sui, J. L. & Shao, J. A. 2007. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: underplating, replacement and delamination. Lithos 96, 3654.CrossRefGoogle Scholar
Zhang, H. F. 2005. Transformation of lithospheric mantle through peridotite–melt reaction: a case of Sino-Korean craton. Earth and Planetary Science Letters 237, 768–80.CrossRefGoogle Scholar
Zhang, H. F. 2007. Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution. In Mesozoic sub-continental lithospheric thinning under eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R.), pp. 3554. Geological Society of London, Special Publication no. 280.Google Scholar
Zhang, H. F. 2009. Peridotite–melt interaction: a key point for the destruction of cratonic lithosphere mantle. Chinese Science Bulletin 54, 249–59.Google Scholar
Zhang, H. F., Sun, M., Zhou, X. H., Zhou, M. F., Fan, W. M. & Zheng, J. P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta 67, 4373–87.CrossRefGoogle Scholar
Zhang, H. F., Goldstein, S. L., Zhou, X. H., Sun, M. & Cai, Y. 2009. Comprehensive refertilization of lithosphere mantle beneath the North China Craton: further Os–Sr–Nd isotopic evidence. Journal of the Geological Society, London 166, 249–59.CrossRefGoogle Scholar
Zhang, X. H., Wang, H. & Ma, Y. J. 2003. 40Ar/39Ar age constraints on two NNE-trending ductile shear zones from Yanshan orogen, North China Craton. International Geology Review 45, 936–47.CrossRefGoogle Scholar
Zhang, X. H., Liu, Q., Ma, Y. L. & Wang, H. 2005. Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted gold deposit, North China craton. Ore Geology Review 26, 325–48.CrossRefGoogle Scholar
Zhang, X. H., Zhang, H. F., Tang, Y. J., Wilde, S. A. & Hu, Z. C. 2008 a. Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia, North China: Implication for Tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology 249, 262–81.CrossRefGoogle Scholar
Zhang, X. H., Mao, Q., Zhang, H. F. & Wilde, S. A. 2008 b. A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning, North China Craton: age, origin and tectonic significance. Geological Magazine 145, 305–20.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research 107, 4573.CrossRefGoogle Scholar
Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., Lu, F. X., Zhang, M. & Pearson, N. J. 2001. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57, 4366.CrossRefGoogle Scholar
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Lu, F. X., Wang, C. Y., Zhang, M., Wang, F. Z. & Li, H. M. 2004. 3.6 Ga lower crust in central China: new evidence on the assembly of the North China craton. Geology 32, 229–32.CrossRefGoogle Scholar
Zhou, X. H., Zhang, G. H., Yang, J. H., Chen, W. J. & Sun, M. 2001. Sr–Nd–Pb isotope mapping of late Mesozoic rocks across northern margin of North China block and implications to geodynamic processes. Geochimica 30, 1023.Google Scholar
Zhi, X., Song, Y., Frey, F. A., Feng, J. & Zhai, M. 1990. Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkaline and theoleiitic basalt. Chemical Geology 88, 133.CrossRefGoogle Scholar
Zindler, A., Staudigel, H. & Batiza, R. 1984. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth and Planetary Science Letters 70, 175–95.CrossRefGoogle Scholar
Supplementary material: PDF

Zhang supplementary material

Table A1.pdf

Download Zhang supplementary material(PDF)
PDF 73.8 KB