Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T09:46:32.942Z Has data issue: false hasContentIssue false

The Difference in Optics Between Volcanic and Plutonic Plagioclases, and its Bearing on the Granite Problem

Published online by Cambridge University Press:  01 May 2009

Doris L. Reynolds
Affiliation:
Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh, 9

Abstract

The orientation of the optical indicatrix in synthetic and volcanic plagioclases differs from that in plutonic and metamorphic plagioclases, the former “optics” being commonly known as “high-temperature”, and the latter as “low-temperature”. The difference between the two series is most marked at the sodic end and decreases towards An70. The conclusion that the difference, though small, still persists in the range An70 to An100 is shown to be unwarranted on the evidence available. Grave doubt is thrown on the supposition that temperature is the controlling factor in determining the type of optics by Tuttle and Bowen's failure to synthesize low-temperature albite, even at low temperatures. It is known, however, that some low-temperature plagioclases (e.g. in albite-schists) have grown without the intervention of melt. The real antithesis may therefore be between plagioclases crystallized from melts, and those developed during the metamorphic reconstitution of rocks.

From the fact that the plagioclase, quartz, and alkali feldspar of undoubted magmatic rocks such as quartz-porphyry and rhyolite are respectively systematically different from those of granite it is concluded that the latter is a metamorphic rock

Type
Articles
Copyright
Copyright © Cambridge University Press 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, L. H., 1950. Annual report of the Director of the Geophysical Laboratory. Carnegie Inst. Washington, Year Book No. 49, 1949–1950, 31–5.Google Scholar
Barth, T. F. W., 1931. Permanent changes in the optical orientation of feldspars exposed to heat. Norsk, geol. tidsskr., xii, 5772.Google Scholar
Beliankin, D., 1934. Albite from Druzhnaya Gorka works having a small angle of optical axes. Compt. Rendus Acad. Sci., U.R.S.S., iii, 651655.Google Scholar
Bowen, N. L., 1913. The melting phenomena of the plagioclase feldspars. Am. Journ. Sci., 4th series, xxxv, 577599.CrossRefGoogle Scholar
Bowen, N. L., and Tuttle, O. F., 1950. The system NaAlSi3O8—KalSi3O8—H2O. Journ Geol., lviii, 489511.Google Scholar
Clough, C. T., and others, 1897. The geology of Cowal. Mem. Geol. Surv. Scotland.Google Scholar
Duparc, J., and Gysin, M., 1926. Sur la composition et les propriétés optiques de quelques plagioclases. Bull. Suisse Min. et Petr., vi, 255266.Google Scholar
Duparc, J., and Gysin, M., 1926. Sur les propriétés optiques de l'anorthite synthétique et sur les résultats comparés donnés par les différentes méthodes de détermination des plagioclases. Bull. Soc. Franc. Min., xlviii, 114.Google Scholar
Ernst, E., and Nieland, H., 1934. Plagioklase von Linosa, ein Beitrag zur Anemousit frage. Min. Petr. Mitt., 46, 93126.CrossRefGoogle Scholar
Fenner, C. N., 1936. Bore-hole investigations in Yellowstone Park. Journ.Geol., xliv, 225315.CrossRefGoogle Scholar
Homma, F., 1932. Über das Ergebnis von Messungen an zonaren Plagioklasen aus Andesiten mit Hilfe des Universaldrehtisches. Schweiz Min. Petr. Hitt., xii, 345352.Google Scholar
Kaaden van der, G., 1951. Optical studies on natural plagioclase feldspars with high- and low-temperature optics. Thesis. Univ. Utrecht. 105 pp.Google Scholar
Köhler, A., 1941. Die Abhängigkeit der Plagioklas-optik vom vorange gangenen Wärmeverhalten. (Die Existenz einer Hoch- und Tieftemperaturoptik.) Min. Petr. Mitt., liii, 2449.CrossRefGoogle Scholar
Köhler, A., 1949. Recent results on investigations on the feldspars. Journ. Geol., lvii, 592–9.CrossRefGoogle Scholar
Larsson, W., 1940. Petrology of interglacial volcanics from the Andes of northern Patagonia. Bull. Geol. Inst. Upsala, xxviii, 191405.Google Scholar
Lundegårdh, P. H., 1941. Bytownit aus Anorthosit von Bönskär im nördlichen Teil der Stockholmer Schären und seine Beziehungen zu verschiedenen Feldspatsbestimmungskurven. Bull. Geol. Inst. Upsala, xxviii, 415430.Google Scholar
Miller, F. S., 1935. Anorthite from California. Am. Min., xx, 139146.Google Scholar
Nikitin, W. W., 1933. Korrekturen und Vervollständigungen der Diagramme zur Bestimmung der Feldspate nach Fedorows Methode. Min. Petr. Mitt., xliv, 117167.Google Scholar
Oftedahl, C., 1944. High temperature optics in plagioclases of the Oslo region. Norsk. geol. tidsskr., xxiv, 75–8.Google Scholar
Oftedahl, C., 1948. Studies on the igneous rock complex of the Oslo region. IX. The feldspars. Norske Vidensk.-Akad. Oslo. I. Mat. Nat. KI. No. 3,71 pp.Google Scholar
Paliuc, G., 1932. Untersuchungen der Plagioklase einiger tertiärer Erguss-gestiene Siebenbürgens (Rumänien) mittelst der Universaldrehtisch-methode. Schweiz Min. Petr. Mitt., xii, 423444.Google Scholar
Perrin, R., and Roubault, M., 1951. Réflexions et discussions a la suite des récents travaux sur les feldspaths. Bull. Soc. géol. France, 6th series, 1, 105117.CrossRefGoogle Scholar
Reinhard, M., 1931. Universal Drehtischmethoden. Basel, 119 pp.Google Scholar
Reynolds, D. L., 1949. Observations concerning granite. Geol. en Mijnbouw N.S. 11, 241263.Google Scholar
Reynolds, D. L., 1951. The geology of Slieve Gullion, Foughill and Carrickcarnan an actualistic interpretation of a Tertiary gabbro-granophyre complex. Trans. Royal Soc. Edinburgh, lxii, 85143.Google Scholar
Scholler, H., 1941. Versuche zur Temperaturabhängigkeit der Plagioklas-optik. Min. Petr. Mitt., liii, 180221.CrossRefGoogle Scholar
Schumann, H., 1931. Lagebestimmung der Optik eines norweigischen Labradors mittels der Drehtischmethode der Fedorow. Schweiz Min. Petr. Mitt., xi, 231–9.Google Scholar
Sørensen, H., 1950. An examination of the plagioclases of some Hekla lavas. Dansk Geol. Forening, xi, 522542.Google Scholar
Tertsch, H., 1941. Die optische Orientierung des Hochtemperatur-Anorthites. Min. Petr. Mitt., liii, 5066.Google Scholar
Tertsch, H., 1942. Zur Hochtemperaturoptik basischer Plagioklase. Min. Petr. Mitt., liv, 193217.Google Scholar
Tertsch, H., 1943. Optische Orientierung albitnaher getemperter Plagioklase. Ak. d. Wiss. Wien, 14.Google Scholar
Tuttle, O. F., 1952. Origin of the contrasting mineralogy of extrusive and plutonic salic rocks. Journ. Geol., lx, 107124.CrossRefGoogle Scholar
Tuttle, O. F., and Bowen, N. L., 1950. High-temperature albite and contiguous feldspars. Journ Geol., lviii, 572583.Google Scholar
Wager, L. R., and Deer, W. A. 1939. The petrology of the Skaergaard intrusion, Kangerdlugssuaq, east Greenland. Medd. om Gronland, cv, No. 4, 352 pp.Google Scholar
Wenk, E., 1933. Statistische Drehtischuntersuchungen an Plagioklasen rumänischer Ergussgesteine. Schweiz Min. Petr. Mitt., xiii, 205219.Google Scholar