Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T13:25:11.119Z Has data issue: false hasContentIssue false

A new modular palaeopascichnid fossil Curviacus ediacaranus new genus and species from the Ediacaran Dengying Formation in the Yangtze Gorges area of South China

Published online by Cambridge University Press:  27 April 2017

BING SHEN*
Affiliation:
School of Earth and Space Sciences, Peking University, Beijing, 100871, China
SHUHAI XIAO
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
CHUANMING ZHOU
Affiliation:
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China
LIN DONG
Affiliation:
School of Earth and Space Sciences, Peking University, Beijing, 100871, China
JIEQIONG CHANG
Affiliation:
School of Earth and Space Sciences, Peking University, Beijing, 100871, China
ZHE CHEN
Affiliation:
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China
*
Author for correspondence: bingshen@pku.edu.cn

Abstract

Non-biomineralizing Ediacaran macrofossils are rare in carbonate facies, but they offer valuable information about their three-dimensional internal anatomy and can broaden our view about their taphonomy and palaeoecology. In this study, we report a new Ediacaran fossil, Curviacus ediacaranus new genus and species, from bituminous limestone of the Shibantan Member of the Dengying Formation in the Yangtze Gorges area of South China. Curviacus is reconstructed as a benthic modular organism consisting of serially arranged and crescent-shaped chambers. The chambers are confined by chamber walls that are replicated by calcispars, and are filled by micritic sediments. Such modular body construction is broadly similar to the co-occurring Yangtziramulus zhangii and other Ediacaran modular fossils, such as Palaeopascichnus. The preservation style of Curviacus is similar to Yangtziramulus, although the phylogenetic affinities of both genera remain unresolved. The new fossil adds to the diversity of Ediacaran modular organisms.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z., Jiang, G., Tong, J., Tian, L., Ye, Q., Song, H. & Song, H. 2015. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China. Precambrian Research 253, 243–53.Google Scholar
Antcliffe, J. B., Gooday, A. J. & Brasier, M. 2011. Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus . Palaeontology 54, 1157–75.Google Scholar
Billings, E. 1872. Fossils in Huronian rocks. Canadian Naturalist and Quarterly Journal of Science 6, 478.Google Scholar
Cai, Y. & Hua, H. 2011. Discussion of ‘First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin’. Geological Magazine 148, 329–33.CrossRefGoogle Scholar
Cai, Y., Hua, H., Xiao, S., Schiffbauer, J. D. & Li, P. 2010. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: importance of event deposits. Palaios 25, 487506.CrossRefGoogle Scholar
Cai, Y., Hua, H. & Zhang, X. 2013. Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte. Precambrian Research 224, 255–67.Google Scholar
Cai, Y., Schiffbauer, J. D., Hua, H. & Xiao, S. 2011. Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China. Precambrian Research 191, 4657.Google Scholar
Cai, Y., Xiao, S., Hua, H. & Yuan, X. 2015. New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Research 261, 1224.CrossRefGoogle Scholar
Chen, P. 1984. Discovery of Lower Cambrian small shelly fossils from Jijiapo, Yichang, west Hubei and its significance. Professional Papers of Stratigraphy and Palaeontology 13, 4966.Google Scholar
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X. & Xiao, S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research 224, 690701.Google Scholar
Chen, Z., Zhou, C., Xiao, S., Wang, W., Guan, C., Hua, H. & Yuan, X. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports 4, 4180, doi: 10.1038/srep04180.Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A. & Jin, Y. 2005. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–8.Google Scholar
Cope, J. 1982. Precambrian fossils of the Carmarthen area, Dyfed. Nature in Wales 1, 11–6.Google Scholar
Crimes, P. 1992. Changes in the trace fossil biota across the Proterozoic–Phanerozoic boundary. Journal of the Geological Society, London 149, 637–46.CrossRefGoogle Scholar
Darroch, S. A. F., Boag, T. H., Racicot, R. A., Tweedt, S., Mason, S. J., Erwin, D. H. & Laflamme, M. 2016. A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 198208.CrossRefGoogle Scholar
Ding, Q., Xing, Y. & Chen, Y. 1985. Metazoa and trace fossils. In Biostratigraphy of the Yangtze Gorge Area, (1) Sinian (eds Zhao, Z., Xing, Y., Ma, G. & Chen, Y.), pp. 115–9. Beijing: Geological Publishing House.Google Scholar
Dong, L., Song, W., Xiao, S., Yuan, X., Chen, Z. & Zhou, C. 2012. Micro- and macrofossils from the Piyuancun Formation and their implications for the Ediacaran–Cambrian boundary in Southern Anhui. Journal of Stratigraphy 36, 600–10.Google Scholar
Dong, L., Xiao, S., Shen, B. & Zhou, C. 2008. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society, London 165, 367–78.Google Scholar
Dong, L., Xiao, S., Shen, B., Zhou, C., Li, G. & Yao, J. 2009. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim Block, northwestern China). Journal of Paleontology 83, 3044.Google Scholar
Droser, M. L., Gehling, J. G., Dzaugis, M. E., Kennedy, M. J., Rice, D. & Allen, M. F. 2014. A new Ediacaran fossil with a novel sediment displacive life habit. Journal of Paleontology 88, 145–51.Google Scholar
Fedonkin, M. A. 1982. New generic name for the Precambrian coelenterates. Paleontologicheskiy Zhurnal 2, 137.Google Scholar
Fedonkin, M. A. 1985. Paleoichnology of the Vendian Metazoa. In The Vendian System. Historical–Geological and Palaeontological Basis. 1: Palaeontology (eds Sokolov, B. S. & Ivanovskiy, A. B.), pp. 112–6. Moscow: Nauka (in Russian).Google Scholar
Fedonkin, M. A. 1990. Systematic description of Vendian Metazoa. In The Vendian System, Vol. 1: Paleontology (eds Sokolov, B. S. & Iwanowski, A. B.), pp. 71120. Heidelberg: Springer-Verlag.Google Scholar
Fedonkin, M. A. & Waggoner, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388, 868–71.Google Scholar
Fedonkin, M. A. & Yochelson, E. L. 2002. Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue-grade colonial eukaryote. Smithsonian Contributions to Paleobiology 94, 129.Google Scholar
Ford, T. D. 1958. Pre-Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society 31, 211–7.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14, 4057.Google Scholar
Gehling, J. G., Narbonne, G. M. & Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology 43, 427–56.Google Scholar
Gehling, J. G. & Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology 70, 185–95.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge, UK: Cambridge University Press.Google Scholar
Gnilovskaya, M. B. 1971. The oldest Vendian water plants on the Russian platform (Upper Proterozoic). Paleontologicheskiy Zhurnal 3, 101–7 (in Russian).Google Scholar
Gooday, A. J. 1991. Xenophyophores (Protista, Rhizopoda) in box-core samples from the abyssal northeast Atlantic Ocean (BIOTRANS area): their taxonomy, morphology, and ecology. Journal of Foraminiferal Research 21, 197211.Google Scholar
Grazhdankin, D. 2014. Patterns of evolution of the Ediacaran soft-bodied biota. Journal of Paleontology 88, 269–83.Google Scholar
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E. & Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in Arctic Siberia. Geology 36, 803–6.Google Scholar
Grazhdankin, D. & Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia 40, 201–10.Google Scholar
Grazhdankin, D., Maslov, A., Mustill, T. M. R. & Krupenin, M. T. 2005. The White Sea Ediacaran-type biota in the Central Urals. Doklady Adademii Nauk 401, 784–8 (in Russian).Google Scholar
Grey, K. & Williams, I. R. 1990. Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia. Precambrian Research 46, 307–28.Google Scholar
Grey, K., Yochelson, E. L., Fedonkin, M. A. & Martin, D. M. 2010. Horodyskia williamsii new species, a Mesoproterozoic macrofossil from Western Australia. Precambrian Research 180, 117.Google Scholar
Guo, J., Li, Y. & Li, G. 2014. Small shelly fossils from the early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research 25, 9991007.CrossRefGoogle Scholar
Gürich, G. 1929. Die altesten Fossilien Sudafrikas. Zeitschrift für Praktische Geologie 37, 85–6.Google Scholar
Gürich, G. 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Paläontologische Zeitschrift 15, 137–54.CrossRefGoogle Scholar
Haines, P. W. 2000. Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Research 100, 97108.Google Scholar
Högström, A. E. S., Jensen, S., Palacios, T. & Ebbestad, J. O. R. 2013. New information on the Ediacaran–Cambrian transition in the Vestertana Group, Finnmark, northern Norway, from trace fossils and organic-walled microfossils. Norwegian Journal of Geology 93, 95106.Google Scholar
Hua, H., Chen, Z. & Zhang, L. 2004. Shaanxilithes from lower Taozichong Formation, Guizhou Province and its geological and paleobiological significance. Journal of Stratigraphy 28, 265–9.Google Scholar
Hua, H., Zhang, L., Zhang, Z. & Wang, J. 2000. New fossil evidence from latest Neoproterozoic Gaojiashan biota, south Shaanxi. Acta Palaeontologica Sinica 39, 381–90.Google Scholar
Ivantsov, A. Yu. 2013. New data on late Vendian problematic fossils from the genus Harlaniella . Stratigraphy and Geological Correlation 21, 592600.CrossRefGoogle Scholar
Jensen, S. 2003. The Proterozoic and Earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology 43, 219–28.Google Scholar
Jiang, G., Shi, X., Zhang, S., Wang, Y. & Xiao, S. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research 19, 831–49.Google Scholar
Klein, A. D. & Paschke, W. M. 2004. Filamentous fungi: the indeterminate lifestyle and microbial ecology. Microbial Ecology 47, 224–35.CrossRefGoogle ScholarPubMed
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J. & Erwin, D. H. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23, 558–73.CrossRefGoogle Scholar
Laflamme, M. & Narbonne, G. M. 2008. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 162–79.Google Scholar
Lan, Z. & Chen, Z. 2012. Possible animal body fossils from the Late Neoproterozoic interglacial successions in the Kimberley region, northwestern Australia. Gondwana Research 21, 293301.CrossRefGoogle Scholar
Lin, S., Zhang, Y., Zhang, L., Tao, X. & Wang, M. 1986. Body and trace fossils of metazoa and algal macrofossils from the upper Sinian Gaojiashan Formation in southern Shaanxi. Geology of Shaanxi 4, 917.Google Scholar
Liu, A. G. 2016. Framboidal pyrite shroud confirms the ‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms. Palaios 31, 259–74.Google Scholar
Mángano, M. G. & Buatois, L. A. 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks. Proceedings of the Royal Society B: Biological Sciences 281, doi: 10.1098/rspb.2014.0038.Google ScholarPubMed
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y. & Hua, H. 2012. Taphonomy of the upper Ediacaran enigmatic ribbon-like fossil Shaanxilithes . Palaios 27, 354–72.CrossRefGoogle Scholar
Meyer, M., Xiao, S., Gill, B. C., Schiffbauer, J. D., Chen, Z., Zhou, C. & Yuan, X. 2014. Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 396, 6274.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science 305, 1141–4.Google Scholar
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33, 421–42.Google Scholar
Narbonne, G. M. & Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30, 647–76.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E. & Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.Google Scholar
Palij, V. M. 1976. Remains of non-skeletal fauna and trace fossils from upper Precambrian and Lower Cambrian deposits of Podolia. In Paleontology and Stratigraphy of the Upper Precambrian and Lower Paleozoic of the South-West part of the East European Platform (ed. Ryabenko, V. A.), pp. 6377. Kiev: Naukova Dumka (in Russian).Google Scholar
Parcha, S. K. & Pandey, S. 2011. Ichnofossils and their significance in the Cambrian successions of the Parahio Valley in the Spiti Basin, Tethys Himalaya, India. Journal of Asian Earth Sciences 42, 1097–116.CrossRefGoogle Scholar
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J., Cedhagen, T., Habura, A. & Bowser, S. S. 2003a. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences of the United States of America 100, 11494–8.Google Scholar
Pawlowski, J., Holzmann, M., Fahrni, J. & Richardson, S. L. 2003b. Small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan. Journal of Eukaryotic Microbiology 50, 483–7.Google Scholar
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology 20, 523–44.CrossRefGoogle Scholar
Schmitz, M. D. 2012. Appendix 2—Radiometric ages used in GTS2012. In The Geologic Time Scale 2012 (eds Gradstein, F., Ogg, J., Schmitz, M. D. & Ogg, G.), pp. 1045–82. Boston: Elsevier.Google Scholar
Seilacher, A. 1960. Lebensspuren als Leitfossilien. Geologische Rundschau 49, 4150.Google Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Precambrian biosphere. Lethaia 22, 229–39.Google Scholar
Seilacher, A. 2007a. The nature of vendobionts. In The Rise and Fall of the Ediacaran Biota (eds Vickers-Rich, P. & Komarower, P.), pp. 387–97. Geological Society of London, Special Publication no. 286.Google Scholar
Seilacher, A. 2007b. Trace Fossil Analysis. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Seilacher, A., Grazhdankin, D. & Legouta, A. 2003. Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontological Research 7, 4354.CrossRefGoogle Scholar
Shang, X., Liu, P., Yang, B., Chen, S. & Wang, C. 2016. Ecology and phylogenetic affinity of the early Cambrian tubular microfossil Megathrix longus . Palaeontology 59, 1328.Google Scholar
Shen, B., Dong, L., Xiao, S. & Kowalewski, M. 2008. The Avalon explosion: expansion and saturation of Ediacara morphospace. Science 319, 81–4.Google Scholar
Shen, B., Xiao, S., Dong, L., Zhou, C. & Liu, J. 2007. Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: implications for their evolutionary root and biostratigraphic significance. Journal of Paleontology 81, 1396–411.Google Scholar
Shen, B., Xiao, S., Zhou, C. & Yuan, X. 2009. Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China. Journal of Paleontology 83, 575–87.Google Scholar
Sokolov, B. S. 1972. The Vendian Period in the Earth history. In International Geological Congress, 34th Session, Reports of Soviet Geologists, 7: Palaeontology, pp. 114–24. Moscow: Nauka (in Russian).Google Scholar
Sokolov, B. S. 1976. Organic world of the Earth on the way to the Phanerozoic differentiation. Vestnik Akademii nauk SSSR 1, 126–43 (in Russian).Google Scholar
Sokolov, B. S. 1990. The Vendian System: historical, geological and paleontological substantiation. In The Vendian System, Volume 2: Regional Geology (eds Sokolov, B. S. & Fedonkin, M. A.), pp. 226–42. Heidelberg: Springer-Verlag.Google Scholar
Sokolov, B. S. & Iwanowski, A. B. 1990. The Vendian System, Volume 1: Paleontology. Heidelberg: Springer-Verlag.Google Scholar
Sperling, E. A. & Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution & Development 12, 201–9.Google Scholar
Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research 31, 361–75.Google Scholar
Tarhan, L. G., Hughes, N. C., Myrow, P. M., Bhargava, O. N., Ahluwalia, A. D. & Kudryavtsev, A. B. 2014. Precambrian–Cambrian boundary interval occurrence and form of the enigmatic tubular body fossil Shaanxilithes ningqiangensis from the Lesser Himalaya of India. Palaeontology 57, 283–98.Google Scholar
Tendal, O. S. 1972. A monograph of the Xenophyophoria (Rhizopodea, Protozoa). Galathea Report 12, 799.Google Scholar
Urbanek, A. & Rozanov, A. Y. (eds) 1983. Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Warszawa: Publishing House Wydawnictwa Geologiczne.Google Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology 43, 104–13.Google Scholar
Wan, B., Xiao, S., Yuan, X., Chen, Z., Pang, K., Tang, Q., Guan, C. & Maisano, J. A. 2014. Orbisiana linearis from the early Ediacaran Lantian Formation of South China and its taphonomic and ecological implications. Precambrian Research 255, 266–75.Google Scholar
Xiao, S., Droser, M., Gehling, J. G., Hughes, I. V., Wan, B., Chen, Z. & Yuan, X. 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology 41, 1095–8.CrossRefGoogle Scholar
Xiao, S. & Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution 24, 3140.Google Scholar
Xiao, S., Narbonne, G. M., Zhou, C., Laflamme, M., Grazhdankin, D. V., Moczydlowska-Vidal, M. & Cui, H. 2016. Towards an Ediacaran time scale: problems, protocols, and prospects. Episodes 39, 540–55.Google Scholar
Xiao, S., Shen, B., Zhou, C., Xie, G. & Yuan, X. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America 102, 10227–32.Google Scholar
Xing, Y., Ding, Q., Luo, H., He, T. & Wang, Y. 1984. The Sinian-Cambrian boundary of China. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences 10, 1262.Google Scholar
Xing, Y. & Yue, Z. 1984. Southwestern Shaanxi. In The Sinian–Cambrian Boundary of China (eds Xing, Y., Ding, Q., Luo, H., He, T. & Wang, Y.), pp. 111–26. Beijing: Geological Publishing House.Google Scholar
Yao, J., Xiao, S., Yin, L., Li, G. & Yuan, X. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology 48, 687708.Google Scholar
Yin, L. 1987. Microbiotas of latest Precambrian sequences in China. In Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian–Cambrian Boundary 1, 415–94.Google Scholar
Yochelson, E. L. & Fedonkin, M. A. 2000. A new tissue-grade organism 1.5 billion years old from Montana. Proceedings of the Biological Society of Washington 113, 843–7.Google Scholar
Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B. & Han, P. 1988. The Sinian System of Hubei. Wuhan: China University of Geosciences Press.Google Scholar
Zhou, C., Xiao, S., Wang, W., Guan, C., Ouyang, Q. & Chen, Z. 2017. The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China, and its implications for the age and chemostratigraphic significance of the Shuram excursion. Precambrian Research 288, 2338.Google Scholar
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y.-L. & Droser, M. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology 36, 867–70.Google Scholar
Zhuravlev, A. Yu, Gámez Vintaned, J. A. & Ivantsov, A. Y. 2009. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geological Magazine 146, 775–80.Google Scholar