Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T04:36:50.197Z Has data issue: false hasContentIssue false

The Shoulders of Glacial Troughs

Published online by Cambridge University Press:  01 May 2009

Extract

The inner or immediate trough of a glaciated valley is now generally regarded as very closely related in origin to the glacier that last flowed in it, being equally a result of its erosive work whether vertically excavated or laterally opened by it. This is the Trog of Richter (1900), which he regarded as more or less exactly containing the glacier of the last glaciation during at least a great part of the period of trough-development, though signs of overflow at the height of the ice flood are found above the “shoulders” which bound the trough. Rarely does the trough comprise the whole valley: more commonly shoulders distinctly separate steep trough walls from gentler upper valley-side slopes. In addition to the inner trough-side shoulders, however, higher benches are in many cases unmistakably present, though they may be poorly defined and are always discontinuous, so that their correlation and restoration as a definite number of actual upper shoulders is by no means certain.

Type
Articles
Copyright
Copyright © Cambridge University Press 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, E. C., 1906. The Ice-Flood Hypothesis of the New Zealand Sound Basins. Journ. Geol., 14, 2254.CrossRefGoogle Scholar
Blache, J., 1914. Le bord d'auge glaciaire de Grésivaudan, rive gauche. Rec. Tr. Inst. Géogr. alp, 2, 353417.Google Scholar
Blache, J., 1931. A propos des formes glaciaires du Cantal. Bull. Ass. de Géogr. fr., 13.Google Scholar
Blache, J., 1938. Sur l'interpretation des irrégularités latérales des auges glaciaires. C.R. Congr. intern, de G´ogr., 2, 1322.Google Scholar
Blanchard, R., 1934. Le prétendu niveau d'érosion du Haut-Grésivaudan. Rev. de Géogr. alpine, 22, 637647.CrossRefGoogle Scholar
Davis, W. M., 1900. Glacial Erosion in France, Switzerland, and Norway. Proc. Boston Soc. Nat. Hist., 29, 273322.Google Scholar
Davis, W. M., 1912 a. A Geographical Pilgrimage from Ireland to Italy. Ann. Ass. Amer. Geogr., 2, 73100.CrossRefGoogle Scholar
Davis, W. M., 1912 b. Die erklärende Beschreibung der Landformen, Leipzig.Google Scholar
Distel, L., 1912. Die Formen alpiner Hochtäler … im Gebiet der Hohen Tauern. Mitt. Geogr. Ges. München, 7.Google Scholar
Engeln, O. D. von, 1938. Glacial Morphology and Glacial Motion. Amer. Journ. Sci., 35, 439.Google Scholar
Ferrar, H. T., 1928. Pleistocene Glaciation of Central Otago. Trans. New Zealand Inst., 614621.Google Scholar
Flückiger, O., 1934. Glaziale Felsformen. Pet. Mitt. Erganz., 218.Google Scholar
Garwood, E. J., 1902. On the origin of some Hanging Valleys in the Alps and Himalayas. Quart. Journ. Geol. Soc, 58, 703718.CrossRefGoogle Scholar
Garwood, E. J., 1910. Features of Alpine Scenery due to Glacial Protection. Geogr. Journ., 36, 310339.CrossRefGoogle Scholar
Geikie, J., 1898. Earth Sculpture.Google Scholar
Gilbert, G. K., 1904. Systematic Asymmetry of Crest Lines in the High Sierra of California. Journ. Geol., 12, 582.CrossRefGoogle Scholar
Hess, H., 1938. Über glaziale Erosion. C.R. Cong. Internat. Géogr., 2, 2737 (gives references to earlier statements of his theory).Google Scholar
De Martonne, E., 19101911. L'érosion glaciaire et la formation des vallées alpines. Ann. de Géogr., 19, 289317;CrossRefGoogle Scholar
De Martonne, E., 19101911. L'érosion glaciaire et la formation des vallées alpines. Ann. de Géogr., 20, 129.Google Scholar
De Martonne, E., 1912. L'évolution des vallees glaciaires alpines. Bull. Soc. Géol. Fr., 12, 516547.Google Scholar
De Martonne, E., 1924. Quelques données nouvelles sur la jeunesse du relief préglaciaire dans les Alpes. Rec. de Trav. Cvijić, 121140.Google Scholar
De Martonne, E., 1935. Traite de Géographic physique, vol. 2, 5th ed.Google Scholar
Park, J., 1909. The Geology of the Queenstown Subdivision. N.Z. Geol. Surv. Bull., 7.Google Scholar
Penck, A., 1900. Die Übertiefung der Alpentäler. Verh. VII Internat. Geogr. Kong., 232–240.Google Scholar
Richter, E., 1900. Geomorphologische Untersuchungen in den Hochalpen, Pet. Mitt., Ergänz., 123.Google Scholar
Sölgh, J., 1935. Fluss- und Eiswerk in den Alpen zwischen Ötztal und St. Gotthard. Pet. Mitt., Ergänz., 219, 220.Google Scholar
Speight, R., 1923. Note on the Hanging Valleys of the Upper Rangitata Valley. Trans. New Zealand Inst., 54, 90–8.Google Scholar
Steinmann, G., 1910. Die Eiszeit und der vorgeschichtliche Mensch, Leipzig.Google Scholar
Suess, E., 1888. Antlitz der Erde, vol. 2 (ref. to p. 334 of English ed.).Google Scholar
Taylor, G., 1914. Physiography and Glacial Geology of East Antarctica. Geogr. Journ., 44, 365382, 452–467, 553–571CrossRefGoogle Scholar
Taylor, G., 1922. The Physiography of the McMurdo Sound and Granite Harbour Region, London.Google Scholar