Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:59:21.184Z Has data issue: false hasContentIssue false

Thermochronology quantifying exhumation history of the Wudang Complex in the South Qinling Orogenic Belt, central China

Published online by Cambridge University Press:  13 December 2016

CHUANBO SHEN*
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
DI HU
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
CHUN SHAO
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
LIANFU MEI
Affiliation:
Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
*
Author for correspondence: cugshen@126.com

Abstract

The Wudang Complex located in the central part of South Qinling, has been inferred to be a segment of the Yangtze Craton involved in the orogen. In this study, the cooling/exhumation history of the Wudang Complex is revealed through combined published geochronology data and new apatite fission-track results. Three rapid exhumation episodes related to relevant geodynamic events have been identified. Previous 40Ar–39Ar and (U–Th)/He data indicate that the most significant exhumation, induced by the collision between the North and South China Blocks, occurred from c. 237 to 220 Ma after long-term subsidence and sedimentation of the passive continental margin. The second exhumation event, related to the long-distance effect of the Pacific subduction, occurred during the period from c. 126 to 90 Ma. Following the late Cretaceous – Eocene peneplanation stage, the final late Cenozoic exhumation since c. 15 Ma may be attributed to the combined effect of the eastward growth of the Tibetan Plateau uplift and the Asian monsoon.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. B. & Armstrong, H. A. 2012. Reconciling the intertropical convergence zone, Himalayan/Tibetan tectonics, and the onset of the Asian monsoon system. Journal of Asian Earth Sciences 44 (1), 3647.CrossRefGoogle Scholar
Ames, L., Gaozhi, Z. & Baocheng, X. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15 (2), 472–89.CrossRefGoogle Scholar
An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411 (6833), 62–6.Google Scholar
Armstrong, H. A. & Allen, M. B. 2011. Shifts in the intertropical convergence zone, Himalayan exhumation, and late Cenozoic climate. Geology 39 (1), 1114.CrossRefGoogle Scholar
Arne, D., Worley, B., Wilson, C., She, F. C., Foster, D., Zhi, L. L., Shu, G. L. & Dirks, P. 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau. Tectonophysics 280 (3–4), 239–56.Google Scholar
Bader, T., Franz, L., Ratschbacher, L., Capitani, C. D., Webb, A. A. G., Yang, Z., Pfänder, J. A., Hofmann, M. & Linnemann, U. 2013a. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage. Tectonics 32 (4), 922–47.Google Scholar
Bader, T., Ratschbacher, L., Franz, L., Yang, Z., Hofmann, M., Linnemann, U. & Yuan, H. 2013b. The Heart of China revisited, I. Proterozoic tectonics of the Qin Mountains in the core of supercontinent Rodinia. Tectonics 32 (3), 1497–505.CrossRefGoogle Scholar
Belton, D. X. & Raab, M. J. 2010. Cretaceous reactivation and intensified erosion in the Archean–Proterozoic Limpopo Belt, demonstrated by apatite fission track thermochronology. Tectonophysics 480 (s 1–4), 99108.CrossRefGoogle Scholar
Cai, Z., Xiong, X., Hong, L., Dekuang, W. U., Sun, S. & Rao, B. 2007. Forming age of the volcanic rocks of the Yaolinghe Group from Wudang Block, Southern Qinling Mountain: constraint from grain-zircon U-Pb dating. Acta Geologica Sinica 81 (5), 620–5.Google Scholar
Chen, L., Ma, C. Q., She, Z. B., Mason, R., Zhang, J. Y. & Zhang, C. 2009. Petrogenesis and tectonic implications of A-type granites in the Dabie orogenic belt, China: geochronological and geochemical constraints. Geological Magazine 146 (5), 638–51.CrossRefGoogle Scholar
Cherniak, D. J. & Watson, E. B. 2003. Diffusion in zircon. Physics & Chemistry of Minerals 53, 113–39.Google Scholar
Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X. & Tang, W. 2005. Late Cenozoic uplift of southeastern Tibet. Geology 33 (6), 525–38.Google Scholar
Clark, M. K. & Royden, L. H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28 (8), 703–6.2.0.CO;2>CrossRefGoogle Scholar
Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Long, H. V. & Calves, G. 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience 1 (12), 875–80.Google Scholar
Deng, B., Liu, S. G., Li, Z. W., Jansa, L. F., Liu, S., Wang, G. Z. & Sun, W. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics 591, 98115.CrossRefGoogle Scholar
Donelick, R. A. 1993. Method of fission track analysis utilizing bulk chemical etching of apatite. US Patent No. 5267274.Google Scholar
Donelick, R. A., Ketcham, R. A. & Carlson, W. D. 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist 84, 1224–34.CrossRefGoogle Scholar
Donelick, R. A., O'Sullivan, P. B. & Ketcham, R. A. 2005. Apatite fission-track analysis. Reviews in Mineralogy & Geochemistry 58, 4994.CrossRefGoogle Scholar
Dong, Y., Genser, J., Neubauer, F., Zhang, G., Liu, X., Yang, Z. & Heberer, B. 2011a. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China. Gondwana Research 19 (4), 881–93.Google Scholar
Dong, Y., Liu, X., Zhang, G., Chen, Q., Zhang, X., Li, W. & Yang, C. 2012. Triassic diorites and granitoids in the Foping area: constraints on the conversion from subduction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences 47 (1), 123–42.Google Scholar
Dong, Y. P. & Santosh, M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research 29 (1), 140.CrossRefGoogle Scholar
Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J. & Hauzenberger, C. 2011b. Tectonic evolution of the Qinling orogen, China: review and synthesis. Journal of Asian Earth Sciences 41 (3), 213–37.CrossRefGoogle Scholar
Enkelmann, E., Ratschbacher, L., Jonckheere, R., Nestler, R., Fleischer, M., Gloaguen, R., Hacker, B. R., Zhang, Y. Q. & Ma, Y. S. 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: is Tibetan lower crustal flow diverging around the Sichuan Basin? Geological Society of America Bulletin 118 (5–6), 651–71.Google Scholar
Faure, M., Lin, W., Monié, P., Breton, N. L., Poussineau, S., Panis, D. & Deloule, E. 2003. Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in east China: new petrological-structural-radiometric insights from the Shandong Peninsula. Tectonics 22 (3), 127–43.Google Scholar
Glorie, S., Grave, J. D., Buslov, M. M., Elburg, M. A., Stockli, D. F., Gerdes, A. & Haute, P. V. D. 2010. Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): from emplacement to exhumation. Journal of Asian Earth Sciences 38 (3–4), 131–46.Google Scholar
Grave, J. D., Buslov, M. M. & Haute, P. V. D. 2007. Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology. Journal of Asian Earth Sciences 29 (2–3), 188204.CrossRefGoogle Scholar
Grave, J. D., Glorie, S., Buslov, M. M., Stockli, D. F., Mcwilliams, M. O., Batalev, V. Y. & Haute, P. V. D. 2013. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Research 23 (3), 9981020.CrossRefGoogle Scholar
Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y. & Liu, T. S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416 (6877), 159–63.CrossRefGoogle ScholarPubMed
Guo, Z. T., Sun, B., Zhang, Z. S., Peng, S. Z., Xiao, G. Q., Ge, J. Y., Hao, Q. Z., Qiao, Y. S., Liang, M. Y. & Liu, J. F. 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past 4 (3), 153–74.Google Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D. & Dong, S. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth & Planetary Science Letters 161 (1), 215–30.Google Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., McWilliams, M. O., Ireland, T., Calvert, A., Dong, S., Wenk, H. R. & Chateigner, D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research Solid Earth 105, 13,339–64.Google Scholar
Heberer, B., Anzenbacher, T., Neubauer, F., Genser, J., Dong, Y. & Dunkl, I. 2014. Polyphase exhumation in the western Qinling Mountains, China: rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift. Tectonophysics 617 (4), 3143.CrossRefGoogle ScholarPubMed
Hu, J. 2004. Mid-Late Palaeozoic extension of the Wudang block in the South Qinling tectonic belt, China. Chinese Journal of Geology 39 (3), 305–19.Google Scholar
Hu, S., Kohn, B. P., Raza, A., Wang, J. & Gleadow, A. J. W. 2006a. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai–Dabie belt, central China, from apatite fission-track thermochronology. Tectonophysics 420 (3–4), 409–29.Google Scholar
Hu, S., Raza, A., Min, K., Kohn, B. P., Reiners, P. W., Ketcham, R. A., Wang, J. & Gleadow, A. J. W. 2006b. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the north China craton through the Qinling orogen into the Yangtze craton, central China. Tectonics 25 (6), 97112.Google Scholar
Huang, W. 1993. Multiphase deformation and displacement within a basement complex on a continental margin: the Wudang Complex in the Qinling Orogen, China. Tectonophysics 224 (224), 305–26.Google Scholar
Huang, F., Li, S., Dong, F., Li, Q., Chen, F., Wang, Y. & Yang, W. 2007. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos 96 (1–2), 151–69.Google Scholar
Hurford, A. J. & Green, P. F. 1983. The zeta age calibration of fission-track dating. Chemical Geology 41 (83), 285317.CrossRefGoogle Scholar
Jonckheere, R., Enkelmann, E., Min, M., Trautmann, C. & Ratschbacher, L. 2007. Confined fission tracks in ion-irradiated and step-etched prismatic sections of Durango apatite. Chemical Geology 242 (1), 202–17.CrossRefGoogle Scholar
Jonckheere, R., Ratschbacher, L. & Wagner, G. A. 2003. A repositioning technique for counting induced fission tracks in muscovite external detectors in single-grain dating of minerals with low and inhomogeneous uranium concentrations. Radiation Measurements 37 (3), 217–9.Google Scholar
Ketcham, R. A. 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy & Geochemistry 58 (1), 275314.Google Scholar
Ketcham, R. A., Balestrieri, M. L., Zattin, M. & Donelick, R. A. 2009. Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth & Planetary Science Letters 284 (3), 504–15.Google Scholar
Ketcham, R. A., Donelick, R. A. & Carlson, W. D. 1999. Variability of apatite fission-tack annealing kinetics III: extrapolation to geological time scales. American Mineralogist 84, 1235–55.Google Scholar
Kirby, E., Reiners, P. W., Krol, M. A., Whipple, K. X., Hodges, K. V., Farley, K. A., Tang, W. & Chen, Z. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics 21 (1), 120.Google Scholar
Kröner, A., Zhang, G. W. & Sun, Y. 1993. Granulites in the Tongbai Area, Qinling Belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics 12 (1), 245–55.Google Scholar
Li, S., Xiao, Y., Liou, D., Chen, Y., Ge, N., Zhang, Z., Sun, S. S., Cong, B., Zhang, R. & Hart, S. R. 1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: timing and processes. Chemical Geology 109 (1–4), 89111.Google Scholar
Li, X. H., Li, W. X., Wang, X. C., Li, Q. L., Liu, Y., Tang, G. Q., Gao, Y. Y. & Wu, F. Y. 2010. SIMS U–Pb zircon geochronology of porphyry Cu–Au–(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: magmatic response to early Cretaceous lithospheric extension. Lithos 119 (3–4), 427–38.CrossRefGoogle Scholar
Li, Z. X. & Li, X. H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35 (2), 179–82.Google Scholar
Lin, X., Chen, H., Wyrwoll, K. H. & Cheng, X. 2010. Commencing uplift of the Liupan Shan since 9.5 Ma: evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences 37 (4), 350–60.Google Scholar
Ling, W. L., Duan, R. C., Liu, X. M., Cheng, J. P., Mao, X. W., Peng, L. H. & Liu, Z. X. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin 53 (14), 2192–9.Google Scholar
Ling, W. L., Duan, R. C., Liu, X. M., Cheng, J. P., Mao, X. W., Peng, L. H., Liu, Z. X., Yang, H. M. & Ren, B. F. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Science Bulletin 55 (22), 2440–8.Google Scholar
Liu, J., Zhang, P., Lease, R. O., Zheng, D., Wan, J., Wang, W. & Zhang, H. 2012. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range–Weihe graben: insights from apatite fission track thermochronology. Tectonophysics 584 (1), 281–96.Google Scholar
Liu, M., Cui, X. & Liu, F. 2004. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo–Asian collision? Tectonophysics 393 (1), 2942.Google Scholar
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Kohn, B. & Stuart, F. M. 2014. Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan. Tectonics 33 (2), 135–65.Google Scholar
Mattauer, M., Matte, P., Malavieille, J., Tapponnier, P., Maluski, H., Qin, X. Z., Lun, L. Y. & Qin, T. Y. 1985. Tectonics of the Qinling Belt: build-up and evolution of eastern Asia. Nature 317 (6037), 496500.Google Scholar
McDougall, I. & Harrison, T. M. 1999. Geochronology and thermochronology by the 40Ar/39Ar method. Oxford: Oxford University Press, 269 pp.Google Scholar
McDowell, F. W., McIntosh, W. C. & Farley, K. A. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chemical Geology 214 (3), 249–63.Google Scholar
Molnar, P., Boos, W. R. & Battisti, D. S. 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth & Planetary Sciences 38 (1), 77102.Google Scholar
Okay, A. I., Şengör, A. M. C. & Satir, M. 1993. Tectonics of an ultrahigh-pressure metamorphic terrane: the Dabie Shan/Tongbai Shan Orogen, China. Tectonics 12 (6), 1320–34.Google Scholar
Ouimet, W., Whipple, K., Royden, L., Reiners, P., Hodges, K. & Pringle, M. 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere 2 (1), 5063.CrossRefGoogle Scholar
Ratschbacher, L., Franz, L., Enkelmann, E., Jonckheere, R., Pörschke, A., Hacker, B. R., Dong, S. & Zhang, Y. 2006. The Sino-Korean–Yangtze suture, the Huwan detachment, and the Paleozoic–Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. Special Paper of the Geological Society of America 403, 4575.Google Scholar
Ratschbacher, L., Hacker, B. R., Calvert, A., Webb, L. E., Grimmer, J. C., McWilliams, M. O., Ireland, T., Dong, S., Hu, J. & Calvert, A. 2003. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366 (1–2), 153.Google Scholar
Ratschbacher, L., Hacker, B. R., Webb, L. E., McWilliams, M., Ireland, T., Dong, S., Calvert, A., Chateigner, D. & Wenk, H. R. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research Solid Earth 105 (B6), 13,303–38.Google Scholar
Reiners, P. W., Spell, T. L., Nicolescu, S. & Zanetti, K. A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta 68 (8), 1857–87.Google Scholar
Richardson, N. J., Densmore, A. L., Seward, D., Fowler, A., Wipf, M., Ellis, M. A., Yong, L. & Zhang, Y. 2008. Extraordinary denudation in the Sichuan Basin: insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research 113, B04409. doi: 10.1029/2006/JB004739.Google Scholar
Rowley, D. B., Xue, F., Tucker, R. D., Peng, Z. X., Baker, J. & Davis, A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth & Planetary Science Letters 151 (3–4), 191203.Google Scholar
Şengör, A. M. C. 1985. Geology: East Asian tectonic collage. Nature 318 (6041), 16–7.CrossRefGoogle Scholar
Sharp, W. D. & Clague, D. A. 2006. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science 313 (5791), 1281–4.Google Scholar
Shen, C., Mei, L., Min, K., Jonckheere, R., Ratschbacher, L., Yang, Z., Peng, L. & Liu, Z. 2012. Multi-chronometric dating of the Huarong granitoids from the middle Yangtze Craton: implications for the tectonic evolution of eastern China. Journal of Asian Earth Sciences 52 (3), 7387.Google Scholar
Shen, C., Mei, L., Peng, L., Chen, Y., Yang, Z. & Hong, G. 2011. LA-ICPMS U–Pb zircon age constraints on the provenance of Cretaceous sediments in the Yichang area of the Jianghan Basin, central China. Cretaceous Research 34 (3), 172–83.Google Scholar
Shen, C. B., Mei, L. F. & Xu, S. H. 2009. Fission track dating of Mesozoic sandstones and its tectonic significance in the Eastern Sichuan Basin, China. Radiation Measurements 44 (9), 945–9.CrossRefGoogle Scholar
Tada, R., Zheng, H. & Clift, P. D. 2016. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Progress in Earth & Planetary Science 3 (1), 126.Google Scholar
Tapponnier, P., Zhiqin, Xu, Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Jingsui, Y. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science 294 (5547), 1671–7.Google Scholar
Tian, Y., Kohn, B. P., Gleadow, A. J. W. & Hu, S. 2013. Constructing the Longmen Shan eastern Tibetan Plateau margin: insights from low-temperature thermochronology. Tectonics 32 (3), 576–92.Google Scholar
Tian, Y., Kohn, B. P., Hu, S. & Gleadow, A. J. W. 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: implications for crustal dynamics. Geophysical Research Letters 42 (1), 2935.Google Scholar
Tian, Y., Kohn, B. P., Zhu, C., Xu, M., Hu, S. & Gleadow, A. J. W. 2012. Post-orogenic evolution of the Mesozoic Micang Shan Foreland Basin system, central China. Basin Research 24 (1), 7090.Google Scholar
Wang, X., Zattin, M., Li, J., Song, C., Peng, T., Liu, S. & Liu, B. 2011. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by apatite fission track thermochronology: implications for evolution of the northeastern Tibetan Plateau margin. Journal of Asian Earth Sciences 42 (1–2), 97110.Google Scholar
Wu, F. Y., Lin, J. Q., Wilde, S. A., Zhang, X. O. & Yang, J. H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth & Planetary Science Letters 233 (1), 103–19.Google Scholar
Wu, T., Xiao, L. & Ma, C. 2016. U-Pb Geochronology of detrital and inherited zircons in the Yidun Arc Belt, Eastern Tibet Plateau and its tectonic implications. Journal of Earth Science 27 (3), 461–73.CrossRefGoogle Scholar
Xia, L. Q., Xia, Z. C., Xiang-Min, L. I., Zhong-Ping, M. A. & Xue-Yi, X. U. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Northwestern Geology 41 (3), 129.Google Scholar
Xie, G., Mao, J. & Zhao, H. 2011. Zircon U–Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle–Lower Yangtze River belt (MLYRB), East China. Lithos 125 (1–2), 693710.CrossRefGoogle Scholar
Xiong, F., Ma, C., Jiang, H. & Zhang, H. 2016. Geochronology and petrogenesis of Triassic high-K Calc-Alkaline granodiorites in the East Kunlun Orogen, West China: juvenile lower crustal melting during post-collisional extension. Journal of Earth Science 27 (3), 474–90.Google Scholar
Yang, Z. 2014. Geochronologic constraints on tectonics of the Qin and Daba Mountains. PhD Thesis. Technische Universität Bergakademie Freiberg, Freiberg, Germany. Published thesis.Google Scholar
Yang, Z., Ratschbacher, L., Jonckheere, R., Enkelmann, E., Dong, Y., Shen, C., Wiesinger, M. & Zhang, Q. 2013. Late-stage foreland growth of China's largest orogens (Qinling, Tibet): evidence from the Hannan-Micang crystalline massifs and the northern Sichuan Basin, central China. Lithosphere 5 (4), 420–37.Google Scholar
Yuan, D. Y., Ge, W. P., Chen, Z. W., Li, C. Y., Wang, Z. C., Zhang, H. P., Zhang, P. Z., Zheng, D. W., Zheng, W. J. & Craddock, W. H. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies. Tectonics 32 (5), 1358–70.CrossRefGoogle Scholar
Yue, S. W., Deng, X. H. & Bagas, L. 2014. Geology, isotope geochemistry, and ore genesis of the Yindonggou Ag–Au(–Pb–Zn) deposit, Hubei Province, China. Geological Journal 49 (4–5), 442–62.Google Scholar
Zhang, C., Ma, C. Q. & Holtz, F. 2010. Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (cental China): implications for delamination of the lower continental crust and melt–mantle interaction. Lithos 119 (3–4), 467–84.Google Scholar
Zhang, C., Ma, C. Q., Liao, Q. A., Zhang, J. Y. & She, Z. B. 2011. Implications of subduction and subduction zone migration of the Paleo-Pacific Plate beneath eastern North China, based on distribution, geochronology, and geochemistry of Late Mesozoic volcanic rocks. International Journal of Earth Sciences 100 (7), 1665–84.Google Scholar
Zhang, P., Miao, Y., Zhang, Z., Lu, S., Zhang, Y., Chen, H., Li, X., Miao, Q., Feng, W. & Ou, J. 2013. Late Cenozoic sporopollen records in the Yangtze River Delta, East China and implications for East Asian summer monsoon evolution. Palaeogeography Palaeoclimatology Palaeoecology 388 (6), 153–65.Google Scholar
Zhang, Y. Q., Vergely, P. & Mercier, J. 1995. Active faulting in and along the Qinling Range (China) inferred from SPOT imagery analysis and extrusion tectonics of south China. Tectonophysics 243 (1), 6995.CrossRefGoogle Scholar
Zhang, Y., Zhang, J. & Huaikun, L. I. 2013. Zircon U-Pb geochronology of the meta-acidic volcanic rocks from the Wudangshan Group, Southern Qinling Mountains, Central China. Acta Geologica Sinica 61 (9), 4447–55.Google Scholar
Zhang, Z. Q., Zhang, G. W., Tang, S. H. & Wang, J. H. 2002. The age of metamorphic rocks of the Wudang Group. Geology in China 29 (2), 117–25.Google Scholar
Zhang, Z. B., Shen, C. B., Shao, C. & Liu, Z. Q. 2013. Tectonothermal evolution of the eastern Tibetan Plateau Foreland: fission-track thermochronology of the southern Dabashan Fold-Thrust Belt. Journal of Earth Science 24 (4), 479–90.CrossRefGoogle Scholar
Zhao, H. X., Jiang, S. Y., Dai, B. Z., Ma, L. & Li, J. W. 2015. Geochronology and Hf isotope study of pegmatite in the Xiaoqinling Area of NW China: implication for petrogenesis and regional metamorphism. Journal of Earth Science 26 (3), 295305.CrossRefGoogle Scholar
Zhou, B. X., Sun, T., Shen, W., Shu, L. & Niu, Y. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29 (1), 26.Google Scholar
Zhou, X. M. & Li, W. X. 2000. Origin of late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326 (3–4), 269328.Google Scholar