Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T09:55:16.748Z Has data issue: false hasContentIssue false

A FAMILY OF PLANE CURVES WITH MODULI 3g-4

Published online by Cambridge University Press:  01 September 2007

ABEL CASTORENA*
Affiliation:
Instituto de Matemáticas, Unidad Morelia, Universidad Nacional Autónoma de México Apdo, Postal 61-3(Xangari), C.P. 58089, Morelia, Michoacán, MEXICO e-mail: abel@matmor.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the moduli space of smooth and complex irreducible projective curves of genus g, let be the locus of curves that do not satisfy the Gieseker-Petri theorem. Let be the subvariety of GPg formed by curves C of genus g with a pencil g1d=(V, LG1d(C) free of base points for which the Petri map μV:VH0(C,KCL−1)→H0(C,KC) is not injective. For g≥8, we construct in this work a family of irreducible plane curves of genus g with moduli

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2007

References

REFERENCES

1.Arbarello, E. and Cornalba, M., Su una congettura di Petri, Comment. Math Helvetici. 56 (1981), 138.Google Scholar
2.Arbarello, E. and Cornalba, M., A few remarks about the variety of irreducible plane curves of given degree and genus, Ann. Scient. Éc. Norm. Sup. 4 serie, 16 (1983), 467488.Google Scholar
3.Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of algebraic curves Volume I, Grundlehrem der Mathematischen Wissenschaften No. 267 (Springer-Verlag 1984).Google Scholar
4.Castorena, A., Curves of genus seven that do not satisfy the Gieseker-Petri theorem, Bolletino U.M.I. 8 (2005), 697706.Google Scholar
5.Ciliberto, C., Canonical surfaces with p g = p a = 4 and K 2 = 5,. . ,10, Duke Math. J. 48 (1981), 121157.Google Scholar
6.Eisenbud, D. and Harris, J., The Kodaira dimension of the moduli space of curves of genus g ≥ 23, Invent. Math. 90 (1987), 359387.CrossRefGoogle Scholar
7.Eisenbud, D. and Harris, J., Irreducibility of some families of linear series with Brill-Noether Number -1, Ann. Scient. Éc. Norm. Sup. 4 série t. 22 (1989) 3353.CrossRefGoogle Scholar
8.Gavril, Farkas, Gaussian, maps, Gieseker-Petri loci and large theta-characteristics, J. Reine Angew. Math. 581 (2005), 151173.Google Scholar
9.Harris, J. and Morrison, I., Moduli of curves. Graduate Texts in Mathematics No. 187 (Springer-Verlag 1998).Google Scholar
10.i Bigas, M. Teixidor, Half-canonical series on algebraic curves, Trans. Amer. Math. Soc. 302 (1987) 99115.Google Scholar
11.i Bigas, M. Teixidor, The divisor of curves with a vanishing theta-null, Compositio Math. 66 (1988) 1522.Google Scholar