We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We show that the Gromov-Lawson-Rosenberg conjecture for the Semi-Dihedral group of order 16 is true.
1.Bayen, D., The connective real K-homology of finite groups, Phd. Thesis (Wayne State University, 1994).Google Scholar
2
2.Botvinnik, B. and Gilkey, P., The eta invariant and metrics of positive scalar curvatureMath. Ann.302 (1995), 507–517.Google Scholar
3
3.Botvinnik, B., Gilkey, P. and Stolz, S., The Gromov Lawson Rosenberg conjecture for groups with periodic cohomology, J. Differ. Geom.46(3) (1997), 374–405.Google Scholar
4
4.Bruner, R. R. and Greenlees, J. P. C., The connective K-theory of finite groups, Mem. Am. Math. Soc.165(785) (2003), 127.Google Scholar
5
5.Bruner, R. R. and Greenlees, J. P. C., The connective real K-theory of finite groupsMath. Surv. Monogr.169 (2010).Google Scholar
6
6.Dwyer, W., Schick, T. and Stolz, S., Remarks on a conjecture of Gromov and Lawson, High dimensional manifold topology (Word Scientific publishing, River edge, New Jersey, 2003) 159–176.Google Scholar
7
7.Donnelly, H., Eta invariants for G-spacesIndiana Univ. Math. J.27 (1978), 889–918.Google Scholar
8
8.Evens, L. and Priddy, S., The cohomology of the semi-dihedral groupContemp. Math.37 (1985).Google Scholar
9
9.Gromov, M. and Lawson, H. B., The classification of simply connected manifolds of positive scalar curvatureAnn. Math.111 (1980), 423–434.CrossRefGoogle Scholar
11.Joachim, M. and Malhotra, A., The Gromov-Lawson-Rosenberg conjecture for dihedral groups, In preparation.Google Scholar
12
12.Kreck, M. and Stolz, S., ℍℙ2 bundles and elliptic homologyActa Math.171 (1993), 231–261.CrossRefGoogle Scholar
13
13.Kwasik, S. and Scultz, R., Positive scalar curvature and periodic fundamental groupsMath. Helv.65 (1990), 271–286.Google Scholar
14
14.Lawson, H. B. and Michelsohn, M. L., Spin geometry, Princeton Mathematical Series, vol. 38 (Princeton University Press, 1989)Google Scholar
15
15.Lichnerowicz, A., Spineurs harmoniqueC. R. Acad. Sci. Paris257 (1963), 7–9.Google Scholar
16
16.Malhotra, A., The Gromov-Lawson-Rosenberg conjecture for some finite groups, Thesis (The university of Sheffield, UK, 2011), available online at http://arxiv.org/abs/1305.0455.Google Scholar
18.Rosenberg, J., C*-Algebras, positive scalar curvature and the Novikov conjecture I, Inst. Étaudes Sci. Publ. Math.58 (1983), 197–212.Google Scholar
19
19.Rosenberg, J., C*-Algebras, positive scalar curvature and the Novikov conjecture II, in Geometric methods in operator algebras (Araki, H. and Effros, E., Editors) Pitman Research Notes in Mathematics Series, vol. 123 (Longman, Harlow, 1986) 341–374.Google Scholar
20
20.Rosenberg, J., C*-Algebras, positive scalar curvature and the Novikov conjecture IIITopology25 (1986), 319–336.Google Scholar
21
21.Rosenberg, J. and Stolz, S., Manifolds of positive scalar curvature, Algebraic topology and its applications (Carlson, G., Cohen, R., Hsiang, W. C. and Jones, J. D. S, Editors) Mathematical Sciences Research Institute Publications, vol 27, (Springer, New York, 1994) 241–267.CrossRefGoogle Scholar
22
22.Rosenberg, J. and Stolz, S., A stable version of the Gromov-Lawson conjectureContemp. Math.181 (1995), 405–418.Google Scholar
23
23.Schick, T., A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology37(6) (1998), 1165–1168.CrossRefGoogle Scholar