Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:57:05.423Z Has data issue: false hasContentIssue false

Chemical Effects of Interstellar Grains

Published online by Cambridge University Press:  14 August 2015

David A. Williams*
Affiliation:
Department of Mathematics, UMIST, Manchester M60 1QD, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical effects of interstellar grains are briefly reviewed. Their dominant chemical role is to catalyze the formation of H2 which is the seminal molecule for efficient gas phase chemistry. In regions of at least moderate extinction grains accumulate molecular mantles of CO, H2O, etc. Solid state chemistry in such mantles may produce molecules of a type or in an abundance not achievable in the interstellar gas. Return of mantle material to the gas can – at least transiently – dominate gas phase chemistry. It is argued that the freeze-out of heavy atomic and molecular species on to grain surfaces limits the time available for chemistry, restricts molecular cloud chemistry to a “young” character, and suggests that chemical models of molecular clouds must have cyclic dynamics. Such models are briefly described.

Type
Joint Discussions
Copyright
Copyright © Kluwer 1989

References

Brown, P.D., Charnley, S.B. & Millar, T.J. 1988 Mon. Not. R. astr. Soc. 231, 409.CrossRefGoogle Scholar
Brown, P.D. & Charnley, S.B. 1988 in preparation.Google Scholar
Charnley, S.B., Dyson, J.E., Harquist, T.W. & Williams, D.A. 1988a. Mon. Not. R. astr. Soc. 231, 269.Google Scholar
Charnley, S.B., Dyson, J.E., Harquist, T.W. & Williams, D.A. 1988. Mon. Not. R. astr. Soc. in press.Google Scholar
Duley, W.W. & Williams, D.A. 1986. Mon. Not. R. astr. Soc. 223, 177.Google Scholar
Fuller, G.A. & Myers, P.C. 1987, Physical Processes in Interstellar Clouds, Morfill, G.E. & Scholer, M. (eds), D. Reidel Pub. Co., p.137 Google Scholar
Goldsmith, P.F., Langer, W.D. & Wilson, R.W. 1986. Astrophys. J. Lett. 303, L11.Google Scholar
d’Hendecourt, L.B., Allamandola, L.J., Baas, F. & Greenberg, J.M. 1982. Astron. Astrophys. 109, L12.Google Scholar
Jones, A.P. & Williams, D.A. 1984, Mon. Not. R. astr. Soc. 209, 955.Google Scholar
Jones, A.P. & Williams, D.A. 1986 Mon. Not. R. astr. Soc. 219, 441.Google Scholar
Lada, C. 1985. Ann. Rev. Astron. Astrophys. 23, 267.CrossRefGoogle Scholar
Mann, A.P.C. & Williams, D.A. 1984 Mon. Not. R. astr. Soc. 209, 33.CrossRefGoogle Scholar
Mann, A.P.C. & Williams, D.A. 1986 Mon. Not. R. astr. Soc. 213, 295.Google Scholar
Pauls, T.A., Wilson, T.L., Bieging, J.H. & Martin, R.N. 1984. Astron. Astrophys. 124, 33.Google Scholar
Tarafdar, S. 1988, this volume.Google Scholar
Watt, G.D. 1984. Mon. Not. R. astr. Soc. 212, 93.Google Scholar