Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:39:43.452Z Has data issue: false hasContentIssue false

Relativistic Considerations for Precession and Nutation

Published online by Cambridge University Press:  14 August 2015

S.A. Klioner
Affiliation:
Lohrmann Observatorium, Technische Universität Dresden, Mommsenstraße 13, D-01062 Dresden, Germany
M. Soffel
Affiliation:
Lohrmann Observatorium, Technische Universität Dresden, Mommsenstraße 13, D-01062 Dresden, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The whole scope of problems related with the rotational motion of celestial bodies is briefly discussed. Relativistic modeling of the Earth rotation is considered from a conceptual point of view. Relativistic effects in rotational equations of motion of an extended body in general relativity are discussed. Numerical values of the effects are given.

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1998

References

Bizouard, C., Schastok, J., Soffel, M.H. and Souchay, J. (1992) Etude de la rotation de la Terre dans le cadre de la relativité générale: premiere approche. In: Proc. Journées Systèmes de Référence Spatio-temporels 1992, ed. Capitaine, N., Observatoire de Paris, pp. 76.Google Scholar
Bois, E. and Vockrouhlicky, D. (1995) Relativistic spin effects in the Earth-Moon system. Astron, Astrophys., 300, pp. 559.Google Scholar
Brumberg, V.A. (1991) Essential Relativistic Celestial Mechanics. Adam Hilger, Bristol.Google Scholar
Brumberg, V.A., Bretagnon, P. and Guinot, B. (1996) Astronomical Units and Constants in the General Relativity Framework. Celest. Mech. Dyn. Astron., 64, pp. 231.Google Scholar
Damour, T., Soffel, M. and Xu, Ch. (1991) General-Relativistic Celestial Mechanics. Phys. Rev. D., 43, pp. 3273.Google Scholar
Damour, T., Soffel, M. and Xu, Ch. (1992) General-Relativistic Celestial Mechanics. Phys. Rev. D., 45, pp. 1017.Google Scholar
Damour, T., Soffel, M. and Xu, Ch. (1993) General-Relativistic Celestial Mechanics. Phys. Rev. D., 47, pp. 3124.Google Scholar
Klioner, S.A. (1996) Angular Velocity of Rotation of Extended Bodies in General Relativity. In: Dynamics, ephemerides and astrometry in the solar system, eds. Ferraz-Mello, S., Morando, B. and Arlot, J.E., Kluwer, Dordrecht, pp. 309.Google Scholar
Klioner, S.A. (1997) On the problem of post-Newtonian Rotational Motion. In: Dynamics and Astrometry of Natural and Artificial Celestial Bodies, eds. Wytrzysczak, I.M., Lieske, J.H. and Feldman, R.A., Kluwer, Dordrecht, pp. 383.Google Scholar
Soffel, M. (1994) The problem of rotational motion and rigid bodies in the post-Newtonian framework, unpublished notes.Google Scholar